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In this chapter we will discuss theoretical techniques
that provide approximate descriptions of the scatter-

ing and reactions of composite nuclei over a wide
range of incident energies. The approaches use cal-
culate approximate solutions of the time-independent
few-body Schrödinger equation containing two-body
effective interactions between particles. Such models
are particularly important in direct nuclear reactions
applications; see Chapter 3.1.2.

Our focus is on projectile nuclei with structures
that, to a good approximation, can be described as
strongly correlated n-body systems. These n bodies
can be individual nucleons or more massive clusters of
many nucleons but are usually very much fewer than
the actual number of nucleons mp in the projectile.
The deuteron and the three-nucleon systems 3H and
3He are exceptions for which the methods discussed
are also highly applicable. Loosely bound neutron-
and proton-rich nuclei and highly clustered light nu-
clei, such as 6Li and 7Li, are usefully described as ef-
fective few-body systems and, when interacting with
strong or electromagnetic probes, require the tech-
niques presented here to account for their elastic scat-
tering, inelastic excitation and breakup. Particular
applications of the techniques are provided through
references.

We deal exclusively with nonperturbative ap-
proaches. Methods such as the distorted waves
Born approximation (DWBA), which treat the reac-
tions as a first-order transition between mean field
states, and their multistep generalisations, are dis-
cussed comprehensively elsewhere (Austern, 1970;
Satchler, 1983). Similarly, perturbative semi-classical
trajectory methods, inspired by Coulomb excitation
theory, have been the subject of definitive texts (Alder
and Winther, 1975) and recent reviews (Baur and
Rebel, 1994; Esbensen, 1999). We will also not dis-
cuss explicit time-dependent nonperturbative meth-
ods as there have been very few practical applications
for nuclear few-body projectiles including a multinu-
cleon cluster (Melezhik and Bayer, 1999).

In §3 through §6 we discuss fully quantum me-
chanical approaches based on coupled channels and
adiabatic approximations. §7 through §11 discuss
eikonal, and more general impact parameter-based
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theoretical approaches, applicable to few-body sys-
tems.

§ 1. Few-Body Model Space

We consider the scattering of a n-body projectile nu-
cleus p with incident laboratory energy Elab by a tar-
get nucleus t of mass mt and charge Zt. The pro-
jectile’s ground state is assumed to be a bound state
φ(n)

0 of the n constituents with individual masses mj
and charges Zj. Each constituent j will be assumed to
interact with the target nucleus through a two-body
effective interaction Vjt, which in general is complex
and which will be assumed central throughout. This
approach (Austern, 1970; Satchler, 1983) derives ap-
proximations to the projection of the full many-body
wave function of the projectile and target nuclei onto
the target nucleus ground state. The effects of exci-
tation of the target thus show up only through the
fact that the effective interactions entering the few-
body Hamiltonian are complex. If explicit target ex-
citation effects are of importance then these must be
treated using the coupled-channels methods discussed
in Chapter 3.1.2. In applications, the Vjt are usu-
ally identified with the energy-dependent phenomeno-
logical optical potentials obtained by fitting reaction
data for each jt binary subsystem at the same incident
energy per nucleon. Alternatively, these interactions
are calculated from theoretical multiple scattering or
folding models.

In many cases, such as the deuteron, 6Li and the
neutron-rich light nuclei 6He, 11Li, and 19C, the pro-
jectile has only one particle stable bound state. The
tidal forces on the projectile constituents will there-
fore couple the projectile ground state strongly to the
continuum. A major motivation for the few-body
models discussed here is the realistic treatment of
and insight into the importance of these breakup ef-
fects, on scattering and direct reaction measurements
and upon their interpretation. The coupling between
these continuum excited states is also extremely im-
portant (Kamimura et al., 1986) and their inclusion is
an important feature of all the approaches presented.

We adopt the system of coordinates shown in
Fig. 1 where the set of vectors {ri} refer to the n−1
independent internal spatial coordinates of the projec-
tile. These will be clarified in individual applications.
The vectors {xj} refer to the positions of the n pro-
jectile constituents relative to the centre of mass (cm)
of the projectile. Vector R is the target-to-projectile
cm separation and the Rj = R + xj are the coordinates
of the constituents relative to the target. The coor-
dinate z axis will be chosen along the incident beam
direction K0, throughout.

The Schrödinger equation satisfied by the scatter-
ing wave function of our effective n+1-body (projec-

tile and target) system, Ψ(+), when the projectile is in-
cident with wave vector K0 in the cm frame, is

[H−E]Ψ(+)
K0

({ri}, R) = 0, (1)

with total Hamiltonian H = TR + U({Rj}) + Hp. Here
Hp is the internal Hamiltonian for the projectile
and TR is the projectile cm kinetic energy operator.
U({Rj}) = ∑n

j=1 Vjt(Rj) is the total interaction between
the projectile and the target. The n-body projectile
ground state wave function φ(n)

0 satisfies

Hp φ(n)
0 ({ri}) = −ε0 φ(n)

0 ({ri}). (2)

Hp will also generate an excited continuum spectrum
and may also support a finite number of bound or
resonant excited states. We seek solutions of the few-
body scattering wave function Ψ(+)

K0
that satisfy the

scattering boundary conditions

Ψ(+)
K0

({ri}, R) = eiK0·R φ(n)
0 ({ri}) + outgoingwaves, (3)

and where the target nucleus is assumed to remain
in its ground state. For a projectile with a single
bound state, the outgoing waves include only elastic
scattering and elastic breakup channels. More gener-
ally, the outgoing waves will also include terms from
any inelastically excited bound states. The incident
plane wave boundary condition stated in Eq. (3) is of
course strictly correct only in the presence of screened
Coulomb interactions. All formulae we use can be
justified, as is usual, by considering the limit of the
appropriately screened Coulomb problem.

It is implicit in the following that the methods we
discuss yield only approximate solutions of the physi-
cal n-body problem, as was discussed also in Chapter
3.1.2. In particular one- and multiconstituent rear-
rangement channels are absent in the asymptotic (R→
∞) regions of the derived solutions, due to our use
of complex constituent–target interactions and radial
and orbital angular momentum truncations (Austern
et al., 1987). In fact, all the theoretical schemes

Figure 1 Definition of the coordinate vectors used in the case
of a three-body projectile.
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calculate approximations to Ψ(+) that are expected to
be accurate representations of the n-body dynamics
only within a restricted volume of the configuration
space, or within a given interaction region. Reaction
or scattering amplitudes can nevertheless be calcu-
lated accurately by using the wave function within an
appropriate transition matrix element. We pay partic-
ular attention to the way in which the different models
can be used to calculate elastic and inelastic scattering
and breakup observables. We will not discuss trans-
fer or charge-exchange reactions significantly but it
is understood that, in these cases also, Ψ(+) should
be used in the appropriate transition matrix elements
(Kamimura et al., 1986; Austern et al., 1987).

§ 2. Folding Model

The folding model potential (Watanabe, 1958) be-
tween the projectile and target is the ground state
expectation value of the summed constituent interac-
tions with the target,

V00(R) = 〈φ(n)
0 |U({Rj})|φ(n)

0 〉. (4)

Within the few-body models we will discuss, this cal-
culates the projectile–target interaction in the limit
when excitation of the projectile is also neglected.
The folding model is therefore often used as a refer-
ence from which to assess the importance of explicit
breakup channel couplings and, in the case of elas-
tic scattering, the dynamic polarisation effects intro-
duced by such excitations. Calculation of V00 is non-
trivial for n>2 but can be carried out using numerical
quadratures for n = 3 or Monte Carlo sampling for
larger n.

§ 3. Continuum Discretisation

The now-established technique in this category is the
coupled discretised continuum channels (CDCC) ap-
proach, which has been formulated and applied ex-
tensively to the scattering of n=2 projectiles, such as
the deuteron (n + p), 6Li (α + d) and 7Li (α + t) nuclei.
The development of the approach and its relationship
to Faddeev and other three-body methods have been
comprehensively reviewed (Kamimura et al., 1986;
Austern et al., 1987). The method will not however
be extended readily to systems with n>2.

By construction of a square integrable basis set
φ̂α(r) of relative motion states in the two-body sep-
aration r = R1 −R2, on which to expand Ψ(+)(r, R),
the CDCC approximates the three-body Schrödinger
equation as an effective two-body coupled-channels
equation set. The CDCC therefore works with the
model space Hamiltonian

HCD = PHP, P =
αmax

∑
α=0

|φ̂α〉〈φ̂α|. (5)

In outlining the technique we neglect, for simplicity,
the constituent and target intrinsic spins and also any
explicit treatment of target excitation. The projectile
ground (excited) state total angular momentum Jp(J∗p)
is then just the relative orbital angular momentum be-
tween the two constituents 0̀(`). We assume also that
the projectile p has a single bound state. The physical
spectrum of Hp is represented schematically in part of
Fig. 2a, the continuum states φk(r) extending over rel-
ative momenta k and relative energy εk. The breakup
channels become closed asymptotically for

εk = h-2k2/2µ > h-2K2
0/2µp − ε0, (6)

where µ and µp are the projectile internal and cm re-
duced masses.

Bin State Construction

The CDCC treatment of the projectile internal excita-
tions is shown schematically in Fig. 2b. Here we de-
note by (1), (2) · · ·, a physically significant set of spin-
parity relative motion excitations, e.g., J∗p = 0, 1, 2 in
the case of a deuteron, which has Jp = 0̀ = 0. For
each of these J∗p excitations the k continuum is di-
vided (or binned) into a set of intervals of width ∆ki =
[ki −ki−1]. The set of included J∗p states, the number
of bins n(J∗p) per spin-parity state and their upper limit
kmax must necessarily be truncated in the practical cal-
culations. Convergence of the calculations must then
be tested for different sizes of this model space. The
number of bins, their boundaries ki, widths ∆ki and
kmax can of course all depend on J∗p. These parameters
must be chosen to map any characteristic or resonant
features in the continuum. For low incident energies,
kmax may need to be chosen so as to treat some of the
asymptotically closed channels.

For each such bin, a representative normalised
square integrable relative motion wave function,

φ̂m
i`(r) = [ui

`(r)/r]Ym
` (̂r), (7)

Figure 2 Schematic representation of (a) the physical spectrum
of projectile states, and (b) the discretised continuum (CDCC)
treatment of the continuum for different spin-parity excitations.
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can be constructed. Its radial wave function is now a
superposition of the scattering states φ`(k) within the
bin with a weight function fi(k), i.e.,

ui
`(r) =

√

2
πNi

∫ki

ki−1

fi(k)φ`(k, r)dk,

Ni =
∫ki

ki−1

[fi(k)]2dk. (8)

For a nonresonant continuum, typically fi(k) = 1,
in which case Ni = ∆ki. The choice fi(k) = k is also
useful in `= 0 continuum states and provides a more
stable description of the s-wave threshold (k ≈ 0) be-
haviour. When treating isolated resonances (Sakuragi
et al., 1986), the choices fi(k) = |iΓ/[2(εk − ε̂i)+ i¨]|, or
fi(k) = sin δ`(k), provide a more accurate description
of the resonance strength within a bin. We have cho-
sen the φ` to have normalisation

φ`(k, r) → [cos δ`(k)F`(kr) + sin δ`(k)G`(kr)], (9)

at large r, where F` and G` are the regular and irregu-
lar Coulomb functions and δ`(k) is the nuclear phase
shift.

Alternative schemes for the construction of the bin
states have been proposed and compared with that
described above (Piyadasa et al., 1999). Whatever
the details of the scheme used, the φ̂m

iJ∗p
≡ φ̂m

α , where

α ≡ (i, J∗p), play the role of discrete excited states and
can be assigned energies ε̂α = 〈φ̂α|Hp|φ̂α〉. The cor-
responding asymptotic wave numbers Kα, associated
with the cm motion of the projectile in these excited
configurations, are such that

h-2K2
α/2µp + ε̂α = h-2K2

0/2µp − ε0 = E. (10)

Coupled Equations Solution

These bin states, together with the ground state,
constitute a conventional N + 1 state (N=∑n(J∗p))
coupled-channels problem for solution of the CDCC
approximation to Ψ(+)

ΨCD
K0

(r, R) = φ0(r)χ̂0(R) + ∑
J∗p, i


φiJ∗p (r) 
χiJ∗p (R),

=
N
∑
α=0

φ̂α(r)χ̂α(R), (11)

where α = 0 (ε̂0 = −ε0) refers to the projectile ground
state. Explicitly

[TR +Vαα(R)−Eα]χ̂α(R) = − ∑
β 6=α

Vαβ(R)χ̂β(R), (12)

with Eα = E− ε̂α. The coupling interactions are

Vαβ(R) = 〈φ̂α|U({Rj})|φ̂β〉. (13)

The evaluation of these couplings involves additional
practical truncations of the CDCC model space,
namely of (i) the maximum order used in the mul-
tipole expansion of the interactions U, and (ii) the

maximum radius rbin used in evaluating these matrix
elements. These must be chosen to be consistent with
the included J∗p channels and the bin widths ∆ki and
interaction ranges, respectively.

Solution of these coupled equations is carried out
by usual partial wave decomposition. We expand the
scattering wave function, for incident spin projection
m, in total angular momentum eigenstates

ΨCD
K0m(r, R) = ∑

αJMJL
C

JMJ

Lm (K0)ΨCD
αJMJ

(r, R), (14)

where we define

ΨCD
αJMJ

(r, R) = ∑
L′M′JαMα

(L′M′JαMα|JMJ)i
L′

YM′

L′ (̂R)

× φ̂Mα
Jα

(r)[χ̂J
α(R)/R]. (15)

The radial coupled equations for the χ̂ are solved sub-
ject to the asymptotic boundary conditions

χ̂J
α → FL′ (KαR)δ0α + T̂ J

0:αH+
L′ (KαR), (16)

where H+
L = GL + iFL is the outgoing waves Coulomb

function. T̂0:α ≡ T̂LJp:L′J∗p (Kα) is the partial wave T-
matrix element for exciting bin α. The coefficients
C are obtained by matching the entrance channel
boundary condition, and are

C
JMJ

Lm (K0) =
4π
K0

∑
M

eiωL(0)(LMJpm|JMJ)Y
M
L (̂K0)∗, (17)

where ωL(0) is the elastic channel Coulomb phase
ωL = σL −σ0. Combining results, the (partial wave
summed) amplitude for excitation of excited configu-
ration α, in angular momentum sub-state m′, is

F̂m′m(J∗p, Kα) =
4π
K0

√

Kα
K0

∑
LL′J

(L0Jpm|Jm)

×ei[ωL′ (α)+ωL(0)](L′m−m′J∗pm′|Jm)

×T̂ J
LJp:L′J∗p

(Kα)Y0
L(̂K0)Ym−m′

L′ (̂Kα), (18)

and similarly for the nuclear part of the elastic am-
plitude. It is usual to calculate these amplitudes in a
coordinate system in which the x axis is in the reaction
plane of K0 and Kα. The CDCC scheme is available in
a general coupled-channels computer code (Thomp-
son, 1988, 2000).

Two-Body Scattering and Breakup Observables

The calculational structure outlined here leads to sim-
ple expressions for two-body scattering observables,
such as the differential cross-section angular distribu-
tion for elastic and inelastic scattering, and the in-
elastic scattering of the cm of p excited to a given
bin. For elastic scattering, the diagonal point charge
Coulomb amplitude must of course be added. The
cm cross-section angular distribution, summed over
all included breakup excitations, is
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dσ
dΩ K

=
1

2Jp +1 ∑
α 6=0, m′m

∣

∣

∣F̂m′m(α)
∣

∣

∣

2
. (19)

Similarly, from Eq. (18), one obtains the cross sec-
tions for each bin integrated over all directions of the
emerging cm of the fragments, dσ(J∗p)/dε̂i.

Three-Body Breakup Observables

Less obvious is the relationship of the CDCC two-
body inelastic amplitudes F̂mm′ (α) to the breakup
transition amplitudes Tm(k, K) from an initial state
Jp, m to a general physical three-body final state of the
constituents. This is needed to make predictions for
experiments with general detection geometries, since
each laboratory detector configuration and detected
fragment energy involves a distinct final state cm wave
vector K, breakup energy εk and relative motion wave
vector k.

Writing the CDCC approximation to the breakup
transition amplitude by replacing ΨCD in an exact
post-form matrix element gives

Tm(k, K) = 〈φ(−)
k (r)eiK·R|U({Rj})|ΨCD

K0m(r, R)〉. (20)

Inserting the set of bin states, assumed complete for
the model space used, then gives

Tm(k, K) = ∑
α, m′

〈φ(−)
k |φ̂m′

α 〉〈φ̂m′
α , K|U({Rj})|ΨCD

K0m〉. (21)

We now recognise that the matrix elements F̂m′m(α),
renormalised to T-matrix normalisation by removal
of the trivial two-body phase space factors, i.e.,

T̂m′m(α) = −2πh-2

µp

√

K0
Kα

F̂m′m(α), (22)

are precisely the transition matrix elements

T̂m′m(α) = 〈φ̂m′
α , Kα|U({Rj})|ΨCD

K0m〉, (23)

obtained by coupled channels solution on a grid of θα
and Kα values. In our spinless particle case, one finds
that

〈φ(−)
k |φ̂m′

α 〉 =
(2π)3/2

k
√

Nα
(−i)`fα(k)ei[δ`(k)+σ`(k)]Ym′

` (̂k), (24)

where k ∈ ∆kα, and so

Tm(k, K) =
(2π)3/2

k ∑̀
m′

(−i)`exp (i[δ`(k) + σ`(k)])

× fα(k)Ym′

` (̂k)Tm′m(α, K). (25)

In this equation the Tm′m(α, K) at the required final
state vector K ≡ [K,θ,φ] can be obtained by interpo-
lating the bracketed term on the right-hand side of the
expression

Tm′m(α, K) ← ei[m−m′]φ
[

T̂m′m(α)/
√

Nα
]

(26)

from the grid of calculated [Kα,θα] values.
The breakup triple differential cross section in the

case of measurements of the energy of constituent 1 is

d3σ
dE1dΩ1dΩ2

=
2πµp

h-2K0

1
(2Jp +1) ∑

m
|Tm(k, K)|2ρ12, (27)

where ρ12 ≡ ρ(E1, Ω1, Ω2) is the density of states for
the frame (cm or laboratory) of interest (Ohlson,
1965).

Convergence Considerations

The practical convergence of CDCC calculations of
S-matrix elements and elastic scattering, transfer and
breakup observables has been studied carefully for
short-ranged U (Kamimura et al., 1986; Piyadasa
et al., 1999). Convergence with respect to the in-
cluded J∗p channels, the potential multipole expansion
and kmax is readily tested. However, since the radial
extent of the intrinsic bin states rbin is proportional
to 1/∆ki, a careful balance must be met between this
maximum bin radius and the bin widths ∆ki to en-
sure bin state normalisation, inclusion of the full bin
strength and an accurate representation of the cou-
pling interactions Vαβ at large R.

The convergence of CDCC calculations for long-
ranged U, e.g., when including Coulomb breakup,
has yet to be established (Baur and Rebel, 1994). The
long range of U couples states close in the k contin-
uum, requiring narrower bins, larger rbin and hence
larger coupled-channels sets. A problem has been
the lack of an exact non-perturbative solution against
which to assess this convergence. An alternative ap-
proach to Coulomb breakup is discussed in §6 of this
chapter. This will be seen to yield a nonperturbative
calculation of the Coulomb breakup amplitude with-
out model space truncations or discretisation, which
may aid an assessment of the CDCC convergence at
higher energies.

§ 4. Adiabatic Approximation

A considerable simplification of the CDCC calcu-
lational scheme, permitting calculations for n>2, is
achieved by use of an adiabatic treatment of the re-
action dynamics. As for all adiabatic approxima-
tions, we must classify the dynamical variables into
a high-energy (fast) and a low-energy (slow) set. In
the present context we identify the energetic variable
with R, the projectile cm motion and the slow vari-
able with its internal motions ri. At high incident en-
ergy, to be quantified later, and for extended, weakly
bound p, this division is very natural (Johnson and
Soper, 1970). It is assumed therefore that the ener-
gies εk associated with the most strongly coupled ex-
cited configurations in Eq. (1) are such that εk ¼ E,
sometimes also referred to as a sudden approxima-
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tion. Equivalently, due to the slow internal motions
of the constituents of p, the {ri} are assumed frozen
for the time taken for p to traverse the interaction re-
gion. This approximation is also the starting point for
eikonal few-body approaches, based on impact pa-
rameter descriptions, discussed later in this chapter.

Assuming εk ¼ E, little error is made upon replac-
ing Hp in Eq. (1) by a representative (small) constant
energy. Furthermore, taking this energy as the pro-
jectile binding energy −ε0, the adiabatic Schrödinger
equation is, with E0 = E + ε0,

[

TR +U({Rj})−E0
]

ΨAD
K0

({ri}, R) = 0, (28)

whose solutions satisfy the required incident plane
wave boundary conditions of Eq. (3) since their domi-
nant elastic channel component has the correct chan-
nel energy. Clearly for n=2 Eq. (28) can be solved
using the CDCC method by calculating the coupled-
channels set, Eq. (12), with all Eα = E0. Indeed this
provides a valuable check of numerical calculations.
More importantly, the adiabatic approximation has
removed the explicit dynamical dependence on the in-
ternal degrees of freedom of the projectile in Eq. (28),
which is now an effective two-body equation with
only parametric dependence on the set {ri}. Its so-
lution

ΨAD
K0

({ri}, R) = ψAD
K0

({ri}, R)φ(n)
0 ({ri}), (29)

must be evaluated on a grid of required but fixed ri
values.

Except for the few-body wave function at coinci-
dence (ri=0), the solution of Eq. (28) is obtained using
coupled-channels methods. At coincidence, however,
ΨAD satisfies the one-body equation

[TR +U({R})−E0]ΨAD
K0

(0, R) = 0. (30)

The simplicity of this coincidence solution, and its de-
viation from the folding model solution due to V00,
Eq. (4), has provided great insight into the role of
breakup effects in zero-range approximations to re-
action amplitudes (Johnson and Soper, 1970; Austern
et al., 1987).

In the general case, and for comparison with the
CDCC methodology, we outline the structure of the
adiabatic calculational scheme for ΨAD in the n=2
case. As for the CDCC analysis, we neglect particle
spins. The method, including spin considerations, has
also been applied for n=3 projectiles (Christley et al.,
1997).

Adiabatic Coupled Equations Solution

An accepted method of solution (Amakawa et al.,
1979) is to make a truncated orbital angular momen-
tum expansion in the internal coordinate r, and hence
to solve for the effective Hamiltonian

HAD = PH0P, P =
m̀ax

∑
`=0, m

|`m〉〈`m|, (31)

as a coupled-channels problem. Here H0 = TR +
U({Rj}) is the adiabatic Hamiltonian. The general-
isation, for n=3, is to truncate the angular momen-
tum expansions for both of the internal coordinates
(Christley et al., 1997).

The coupled equations can be set up by making the
partial wave expansion of the scattering wave func-
tion,

ΨAD
K0m(r, R) = ∑

JMJL`
C

JMJ

L`m(K0, r)ΨAD
JMJL`

(r, R), (32)

where we assume the projectile is incident in the
ground state, with angular momentum projection m
(and Jp = `0),

φ(2)
0 (r) ≡ φm

`0
(r) = [u`0

(r)/r]Ym
`0

(̂r). (33)

The total angular momentum states are now

ΨAD
JMJL`

(r, R) = ∑
L′M′` ′m′

(L′M′` ′m′|JMJ)i
L′

YM′

L′ (̂R)

×Ym′

` ′ (̂r) [χJ
L`:L′` ′ (r, R)/R], (34)

and the radial distorted waves χJ, for each fixed r,
satisfy the coupled radial equations

[E0 −TL′ ]χJ
L`:L′` ′ (r, R) = ∑

` ′′L′′
iL

′′−L′

×〈(L′` ′)J||U({Rj})||(L′′` ′′)J〉χJ
L`:L′′` ′′ (r, R) (35)

subject to the boundary conditions

χJ
L`:L′` ′ → FL′ (K0R)δ` ′`δL′L +T J

L`:L′` ′ (r)H+
L′ (K0R).(36)

Here TL is the kinetic energy operator in partial wave
L and the partial wave T J are now explicitly r depen-
dent. In the coupling interactions in Eq. (35),

〈̂R, r̂|(L`)JMJ〉 = ∑
Mm

(LM`m|JMJ)YM
L (̂R)Ym

` (̂r), (37)

and the bra-ket denotes integration over ̂R and r̂.
The coefficients C are once again obtained by

matching to the entrance channel boundary condi-
tion. In this case

C
JMJ

L`m(K0, r) =
4π
K0r ∑

M
eiωL(0)(LM`m|JMJ)

×YM
L (̂K0)∗u`0

(r)δ``0
. (38)

The truncations required in this solution are (i) the
order of the potential multipole expansion, and (ii)
the maximum relative orbital angular-momentum-
included m̀ax. The convergence of the model calcu-
lations with respect to these parameters is readily es-
tablished.

Elastic and Inelastic Scattering

It follows that the amplitude of the outgoing waves
in ΨAD, in direction K, when the projectile is incident
with angular momentum projection m and a fixed
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spatial configuration r, is

Fm(r, K) =
4π
K0r ∑

LL′` ′m′J

(L0`0m|Jm)ei[ωL′ (0)+ωL(0)]

× (L′m−m′` ′m′|Jm)Y0
L(̂K0)Ym−m′

L′ (̂K)

×T J
L`0:L′` ′ (r)Ym′

` ′ (̂r)u`0
(r), (39)

with |K| = K0. The predictions for elastic or inelastic
scattering can now be obtained by direct overlap with
the appropriate final state,

Fm′m(K) = 〈φm′

i |Fm(K)〉, (40)

where the integral is over r. For inelastic scattering to
a bound excited state with orbital angular momentum
`1, Eq. (33), then

Fm′m(K) =
4π
K0

∑
LL′J

(L0`0m|Jm)ei[ωL′ (0)+ωL(0)]

× (L′m−m′`1m′|Jm)Y0
L(̂K0)Ym−m′

L′ (̂K)

×
∫∞

0
dru∗`1

(r)T J
L`0:L′`1

(r)u`0
(r). (41)

For elastic scattering, one must add the point
Coulomb amplitude f pt

C (θ) and of course `1 = `0. For
`0 = 0 we have

F(K) = f pt
C (θ) +

1
K0

∑
L

(2L +1)e2iωL(0)PL(cos θ)

×
∫∞

0
dr |u0(r)|2T L

L0:L0(r), (42)

where θ is the scattering angle.

Breakup Reactions

Since the projectile ground state φ(n)
0 is a factor in the

adiabatic wave function, Eq. (29), it is clear that at
large constituent particle separations, ri →∞, the so-
lution will vanish in a region that should contain con-
tributions from some parts of the breakup flux. So,
for large ri, ΨAD will certainly be inaccurate. This is
a consequence of our assumption that the entire spec-
trum of Hp is degenerate with the ground state. It
follows that, to use ΨAD to calculate a breakup am-
plitude (for n=2), we must limit it to certain regions
of the six-dimensional (r, R) space. For instance,
breakup channel overlaps 〈φ(−)

k |Fm(K)〉, analogous to
Eq. (40), would probe the adiabatic wave function
in areas where it is known to be incorrect and so we
cannot extract the breakup amplitude directly from
the asymptotics of the adiabatic solution.

In applications (Thompson and Nagarajan, 1983)
to breakup reactions, ΨAD has instead been used in
the post-form breakup transition matrix element

Tm(k, K) = 〈φ(−)
k (r)eiK·R|U({Rj})|ΨAD

K0m(r, R)〉, (43)

discussed in connection with the CDCC method. Cal-
culations based on this matrix element are a natural

choice given the (r, R) coordinate representation of
ΨAD. The calculation of this matrix element requires
the few-body wave function only in the interaction
region of U. While this does not strictly restrict r to
be small, it is expected, at high incident energy and
in nuclear excitations to low-energy breakup configu-
rations, that the contributions to this matrix element
from large r will be deemphasised, since such compo-
nents require that one or more of the clusters remain
in the vicinity of the target following breakup. The
accuracy of these arguments has not been established
and they are not expected to hold in the cases of high-
energy excitations or if long-ranged interactions are
present within U.

It is also important to recall that incorporating
the adiabatic wave function, and evaluating such a
breakup amplitude, constitutes an iteration beyond
the lowest-order adiabatic method. Formally, calcu-
lation of Eq. (43) is equivalent to extracting the re-
quired amplitudes from the asymptotics of the solu-
tion of the inhomogeneous equation

[E−TR −Hp]ΨK0
(r, R) = U({Rj})ΨAD

K0
(r, R), (44)

in which ΨAD appears only in the source term. While
the calculation of ΨAD neglects the projectile exci-
tation energy, the bra in the calculation of Tm in-
cludes correctly the final state wave functions, kine-
matics and excitation energies. The calculation does
not therefore make the zero adiabaticity parameter
(ξ = 0) approximation of semi-classical theories (Baur
and Rebel, 1994). We return to these ideas in dis-
cussing the recoil approximation to the adiabatic cal-
culation in §6.

The adiabatic approximation can also be used to
provide an approximate few-body wave function in
reaction channels, such as involving the pp and d∗

(spin singlet np) two-body systems, in which there is
no bound state. Applications of this type include the
(3He,pp) (Yahiro et al., 1989) and (p,d∗) (Gönül and
Tostevin, 1996) transfer reactions to these unbound
continuum final states.

Convergence and Accuracy

The adiabatic approximation assumes the states of Hp
excited are of low energy. Of course the strengths
with which the spectrum of breakup states of Hp are
actually excited in a collision will be dictated by the
magnitudes, and moreover the geometries, of the tidal
forces experienced by the projectile’s constituents. It
is the radius and surface diffuseness of the Vjt that
dictate the strong differential forces exerted on the
constituents at the nuclear surface. For excitation
due to the strong interaction, where the optical po-
tentials Vjt have surface diffuseness parameters of or-
der 1 fm, the excitation energy spectrum (calculated



8 Few-body models of nuclear reactions

using the CDCC) typically extends to tens of mega-
electronvolts. For a long-range interaction with slow
spatial variation, the Vjt couple states of Hp only in
close proximity in relative energy. Since the impor-
tant surface diffuseness of nuclear optical potentials
is essentially constant with nuclide and incident en-
ergy, the adiabatic approximation becomes increas-
ingly good at sufficiently high energies.

This validity has been studied extensively for elas-
tic and breakup reactions in deuteron-, 6Li- and
7Li-induced reactions (Kamimura et al., 1986) and
found to lead to good agreement with the CDCC for
projectile energies in excess of≈50 MeV/nucleon. For
elastic and inelastic excitations the relevant ampli-
tudes, Eq. (40), sample the few-body wave function
over the range of the ground or excited state. These
are principally sensitive to the low εk components in
the wave function, for which the adiabatic approach
is well suited. For transfer reactions, however, the
cross-section angular distributions are almost always
a delicate interference of the contributions from trans-
fers taking place on the near and far sides of the nu-
cleus and, particularly with increasing energy and mo-
mentum mismatch in the reaction, are sensitive to dif-
ferent parts of the excited spectrum in the few-body
wave function (Austern et al., 1987; Johnson et al.,
1989). This results in a far greater sensitivity to the
higher εk components in the wave function (Johnson
et al., 1989) that are less well represented in the adia-
batic limit. Numerous nonadiabatic extensions have
been proposed (Austern et al., 1987; Johnson and
Tandy, 1974; Laid et al., 1993) to improve the de-
scription of these breakup components of high rela-
tive momenta. One of the simplest of these, the quasi-
adiabatic approach, is outlined very briefly in the fol-
lowing section. In general, in applications to transfer
reactions, corrections to the adiabatic theory need to
be examined. The CDCC method is of course also
applicable.

§ 5. Quasi-adiabatic Approximation

Quasi-adiabatic methods remove the degeneracy of
the elastic and continuum channels, assumed in the
adiabatic calculation of the n-body wave function,
while at the same time retaining much of the simplic-
ity of the adiabatic theory (Amakawa et al., 1984).
They do so by introducing a representative contin-
uum energy ε̄ 6=−ε0 for the entire spectrum of breakup
states of the projectile, which may however depend
on the cm position coordinate and partial wave L
(Amakawa et al., 1984; Stephenson et al., 1990).

From the adiabatic wave function calculated us-
ing the coupled-channels approach of this section, the
elastic and breakup channels components of the solu-

tion can be separated by projection,

ψAD, el
K0

(R) = 〈φ(n)
0 |ΨAD

K0
〉, (45)

and subtraction

ψAD, bu
K0

({ri}, R) = ψAD
K0

({ri}, R)−ψAD, el
K0

(R). (46)

Decomposing similarly the original, nonadiabatic,
Schrödinger equation

[

TR +U({Rj}) +Hp −E
]

Ψbu
K0

({ri}, R)

=
[

E0 −TR −U({Rj})
]

Ψel
K0

(R), (47)

the quasi-adiabatic approximation solves this inho-
mogeneous problem by replacing (i) Hp→ε̄ on the left-
hand side, and (ii) Ψel→ΨAD, el in the evaluation of the
source term. That is,

[

TR +U({Rj}) + ε̄−E
]

ψQAD, bu
K0

({ri}, R)

=
[

UAD
opt(R)−U({Rj})

]

ψAD, el
K0

(R), (48)

where UAD
opt is the local equivalent potential to the adi-

abatic elastic component ΨAD, el. Similar expressions
can be written down at the partial wave level. In
applications, ε̄ can be taken from the qualitative be-
haviour found from CDCC calculations (Amakawa
et al., 1984) or, like the source term in Eq. (48), can
be estimated from the adiabatic solution. For exam-
ple, as the expectation value of Hp in the breakup
states (Stephenson et al., 1990)

ε̄(R) =
〈ΨAD, bu

K0
|Hp|ΨAD, bu

K0
〉

〈ΨAD, bu
K0

|ΨAD, bu
K0

〉
. (49)

This value can also be used as a starting energy from
which to iterate Eq. (48), subsequent iterations us-
ing ε̄ computed instead from ΨQAD, bu. Applications
of the quasi-adiabatic approach have clarified the im-
portance of the high-energy breakup components in
transfer processes, and also shown that the approach
provides a better description of these high-energy
components (Austern et al., 1987; Amakawa et al.,
1984; Stephenson et al., 1990).

§ 6. Recoil Adiabatic Approximation

A very useful special case of the adiabatic model is ob-
tained when the potential Vct(Rc), between just one of
the projectile constituents c and the target, dominates
in U({Rj}). We refer to c as the projectile core. So,
Rc = R− γcr, where r is the position of the cm of the
remaining n−1 valence particles v relative to c, and
γc = 1−mc/mp. In this limit we show that there is an

exact closed-form solution Ψ̄AD
of the adiabatic n+1-

body Schrödinger equation (Johnson et al., 1997) that
satisfies

[TR + Vct(Rc) − E0]Ψ̄AD
K0

({ri}, R) = 0. (50)

It follows that excitation of the projectile or re-
moval of the valence particles v is by virtue only of the
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interaction and recoil of the core, also referred to as
a “shake-off” mechanism. Applications of this limit
include the scattering of halo nuclei (Hansen et al.,
1995; Tanihata, 1996) such as 11Be, described as a
heavy core nucleus 10Be bound to a single valence
neutron by only 0.5 MeV. Here the 10Be core–target
potential is much stronger, and of longer range, than
the neutron–target potential, i.e., Vct ½Vvt. The scat-
tering of a composite projectile from a highly charged
target, when only the projectile core is charged, is an-
other very important case (Tostevin et al., 1998) dis-
cussed in the following.

As well as providing physical insight, the recoil
limit is valuable for providing a detailed test of
the computational and numerical coupled-channels
methods, since coupled-channels solution, orbital an-
gular momentum truncation and multipole expansion
and truncation are unnecessary in this case.

Recoil Limit Solution

To solve the recoil limit Schrödinger equation,
Eq. (50), we introduce the translation operator U(x),
which shifts the cm variable R through −x, i.e., U(x) =
exp (−x ·∇R). Since the potential operator Vct is

Vct(Rc) = U(γcr)Vct(R)U†(γcr), (51)

and [U(γcr),∇2
R] = 0, then

[TR + Vct(R) − E0]
(

U†(γcr)Ψ̄
AD
K0

({ri}, R)
)

= 0. (52)

Evidently, the most general form of the solution U†Ψ̄
of this equation is the product of an arbitrary function
F(r) of the separation of c and v, the projectile ground
state φ(n)

0 and a projectile cm distorted wave χ(+)(R),
which satisfies the one-body Schrödinger equation

[TR + Vct(R) − E0]χ(+)
K0

(R) = 0. (53)

In the present context therefore χ(+) is the distorted
wave that describes the scattering of the projectile,
considered point-like, by the core interaction Vct. The
required many-body solution of Eq. (50) is therefore

Ψ̄AD
K0

({ri}, R) = F(r)
[

U(γcr)χ(+)
K0

(R)
]

φ(n)
0 ({ri})

= F(r)χ(+)
K0

(Rc)φ(n)
0 ({ri}), (54)

where χ(+) is evaluated at the core’s position coor-
dinate Rc. We note that, since [U(γcr), Hp] 6= 0, this
product solution follows from Eq. (1), with U = Vct,
only if Hp is treated adiabatically.

The multiplicative function F , chosen to satisfy the
incident wave boundary condition, Eq. (3), is

F(r) = exp (iγcK0 · r), (55)

and the exact solution of the adiabatic problem,
Eq. (50), is

Ψ̄AD
K0

({ri}, R) = exp (iγcK0 · r)χ
(+)
K0

(Rc)φ(n)
0 ({ri}). (56)

It is important to stress that this wave function re-
tains breakup components and excitations to any
bound excited states. These couplings are manifest
in the complex dependence of the wave function on r
through both χ(+) and the exponential factor.

The asymptotic form of the wave function for large
R in direction K, and finite ri, is

Ψ̄AD
K0

({ri}, R) → φ(n)
0 ({ri})eiγcq·rfpt(K0, K)

eiKR

R
, (57)

with |K| = |K0|. Here q = K0 − K is the momen-
tum transfer in the reaction, and fpt(K0, K) the
point projectile elastic scattering amplitude associated
with χ(+).

Elastic and Inelastic Scattering

Elastic and inelastic scattering in the recoil adiabatic
limit is, replacing Ψ(+) by Ψ̄AD

in the transition am-
plitude

T̄(Kα) = 〈φ(n)
α ({ri})eiKα·R|Vct|Ψ(+)

K0
({ri}, R)〉, (58)

given by the factorisation

T̄(Kα) = 〈φ(n)
α |eiγcq·r|φ(n)

0 〉〈Kα|Vct|χ(+)
K0

〉
= Fα0(γcq)Tpt(K0, Kal pha). (59)

If, in keeping with the adiabatic approximation, we
assume |Kα| = |K0|, this result can also be obtained
from the asymptotic form, Eq. (57). Then Tpt is
the elastic scattering transition amplitude describing
the scattering of p, assumed point-like, by Vct. The
formfactor Fα0 accounts fully for the effects of pro-
jectile structure and excitation. If in Eq. (58) we take
|Kα| 6= |K0| then Tpt must be calculated half-off the en-
ergy shell. This poses a problem in situations where
the Coulomb interaction plays a significant role due
to the singular nature of the half-off-shell Coulomb T
matrix.

The corresponding scattering differential cross sec-
tions are

(

dσ
dΩ

)

α
= |Fα0(γcq)|2

(

dσ
dΩ

)

pt
. (60)

Clearly Tpt can be highly constrained if experimen-
tal data on the elastic scattering of the core from the
target is available to determine Vct. The importance
of Eq. (60) is that it then identifies those scattering
angles and incident energies at which the structure of
a loosely bound projectile, with a given wave func-
tion, will be manifest as a deviation from the scat-
tering expected if it were a point projectile (Johnson
et al., 1997).

While the formfactor in Eq. (60) is also reminiscent
of factorisations that occur when using Born approxi-
mation and approximate distorted wave theories, the
analysis that led to this result does not involve such
approximations. In fact, only when all intermediate
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states are included do the second- and higher-order
terms in the Born series for the amplitude factorise in
this way. The same argument pertains for the factori-
sation of the wave function in Eq. (56).

Breakup Reactions

Equation (56) is the exact solution of our stated few-
body model, given only the adiabatic assumption.
The explicit form again makes clear that, for large r,
Ψ̄ will be inaccurate. The appropriate breakup ma-
trix element must be chosen accordingly. As for the
elastic and inelastic channels, we can write

T̄(k, K) = 〈φ(−)
k (r)eiK·R|Vct(Rc)|Ψ̄

(+)
K0

(r, R)〉, (61)

and achieve a similar factorisation

T̄(k, K) = Fk0(γcq)Tpt(K0, K), (62)

where now Fk0(γcq) = 〈φ(−)
k |eiγcq·r|φ0〉. While this am-

plitude may be reasonable for a short-ranged Vct, as
was discussed following Eq. (43), when Vct is of long
range the integrand in Eq. (61) is not restricted to
small r. The problem with the half-off-shell Tpt for
the Coulomb interaction also remains with this ma-
trix element.

Since however the distorted wave appearing in
Eq. (56) for Ψ̄AD

is now a function of Rc, then an
alternative breakup transition amplitude is (with n=2
for simplicity)

T̃(Kv, Kc) = 〈eiKv·Rv χ(−)
Kc

(Rc) |Vvc|Ψ̄
AD
K0

(r, R)〉. (63)

This is the breakup amplitude to a c+v final state
with core momentum Kc = (1− γcγtc)K− γtck and va-
lence particle momentum Kv = γcK+k in the cm frame,
where γtc = mt/(mc + mt). χ(−) is the final state wave
function of the core, distorted by Vct. Since Vvt =
0, the valence particle’s final state is a plane wave.
Due to the short range of Vvc ≡ Vvc({ri}), the sum
of all interactions internal to Hp, the integrand in
Eq. (63) strictly involves only finite ri irrespective of
the range of Vct.

As in our discussion of Eq. (44), evaluation of T̃ is
equivalent to solving the inhomogeneous problem

[E−Tv −Tc −Vct]ΨK0
(r, R) = Vvc(r)Ψ̄

AD
K0

(r, R), (64)

where Tv and Tc are the valence and core particle ki-
netic operators. It goes beyond the lowest-order adi-
abatic approximation since it includes correctly the
final state wave functions, kinematics and excitation
energies.

Substituting Eq. (56) in T̃, and noting that Rv =
γtcRc + r, the breakup amplitude is once again seen to
factorise exactly as

T̃(Kv, Kc) = 〈Pv|Vvc|φ0〉 〈Qv, χ(−)
Kc

|χ(+)
K0

〉, (65)

where we have introduced momenta Pv = Kv − γcK0
and Qv = γtcKv. The two factors delineate the struc-
ture and dynamical parts of the calculation.

The projectile structure enters through the first
term, the vertex function 〈Pv|Vvc|φ0〉, which can be
evaluated given a structure model for the projectile.
This matrix element reflects the fact that, in the re-
coil (Vvt = 0) limit, momentum can be transferred to
the valence particle only by virtue of its interaction
Vvc with the core. Since γcK0 is the fraction of the
projectile momentum carried by the incident valence
particle, Pv is the momentum transfer to the valence
particle. The vertex displays explicitly this momen-
tum transfer from the ground state via Vvc.

The second term contains all the dynamics of the
breakup process. In general this overlap of the three
continuum functions 〈Qv, χ(−)

Kc
|χ(+)

K0
〉 is difficult to eval-

uate, although it can be handled using the Vincent–
Fortune integration procedure (Vincent and Fortune,
1970). It can however be evaluated in closed form,
and expressed in terms of the Bremsstrahlung inte-
gral (Baur and Trautmann, 1972; Nordsieck, 1954),
when Vct is the Coulomb interaction and the distorted
waves are three-dimensional Coulomb waves. This
limit has been applied to study the Coulomb breakup
of both n=2 (Tostevin et al., 1998) and n=3 (Banerjee
et al., 1998a,b) projectiles.

Equation (65) is also significant since it treats ex-
actly the finite-range nature of the interaction Vvc,
unlike zero-range and local energy approximations
(Satchler, 1983). The amplitude is therefore applica-
ble to projectiles with any ground state orbital angu-
lar momentum structure, and also includes breakup
contributions from all interaction multipoles and rela-
tive orbital angular momenta between the valence and
core fragments. The amplitude goes significantly be-
yond DWBA theories since it includes the initial and
final state interactions Vct and Vvc to all orders.

In conclusion, the recoil adiabatic limit provides
a closed-form solution of the few-body problem that
becomes more accurate with increasing incident en-
ergy. It thus provides a valuable check of truncated
calculational schemes, such as those discussed in §3
and §4, and also of the (more approximate) impact
parameter approaches of the subsequent sections.

§ 7. Eikonal Two-Body Scattering

In practice, the approaches discussed so far in this
chapter have been restricted to projectiles modeled
as two- or three-body systems. Indeed, only the adi-
abatic and recoil adiabatic models have been used
with a three-body projectile (Christeley et al., 1997;
Banerjee et al., 1998a,b). A more efficient approach
for dealing with an n-body projectile, the few-body
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Glauber (FBG) model, is based on the eikonal approx-
imation. Provided that certain conditions hold, the
FBG approach can also be the most efficient method
for dealing with three- and four-body systems, even
when other approaches are applicable. We first intro-
duce the ideas behind the eikonal and more general
impact parameter approaches using the two-body de-
scription of the scattering of a projectile from a target.
We then extend the approach to treat the scattering of
few-body systems.

The Eikonal Approximation

The eikonal approximation was introduced in quan-
tum scattering theory by Moliere and later developed
by Glauber. It was Glauber who applied it to nuclear
scattering where he formulated a many-body, multi-
ple scattering generalisation of the method (Glauber,
1959). We first describe the eikonal approximation
as applied to nonrelativistic point particle scattering
from a central potential Vpt(R).

In common with other semi-classical approaches,
the eikonal method is useful when the wavelength
of the incident particle is short compared with the
distance over which the potential varies appreciably.
This short wavelength condition is expressed in terms
of the incident centre-of-mass wave number, K0, and
the range of the interaction, R0, such that

K0R0 ½ 1. (66)

However, unlike short wavelength methods such as
the WKB approximation, the eikonal approximation
also requires high scattering energies, such that

E ½ |V0|, (67)

where V0 is a measure of the strength of the potential.
In practice, and when Vpt is complex, this high-energy
condition is not critical and the eikonal approxima-
tion works well even when E ≈ |V0| provided the first
condition, Eq. (66), holds and we restrict ourselves
to forward angle scattering.

Since the potential varies slowly on the length scale
of the incident wavelength, it is reasonable to extract
the free incident plane wave from the scattering wave
function as a factor, i.e.,

ψ(+)
K0

(R) = eiK0·R ω(R), (68)

where ω(R) is a, as yet unspecified, modulating func-
tion. The eikonal approximation to ψ(+) can be de-
rived starting from either the Schrödinger equation or
the Lippmann–Schwinger equation. Here we follow
the first approach. The scattering wave function of
Eq. (68) is substituted in the Schrödinger equation

[

∇2
R +K2

0 −
2µp

h-2
Vpt

]

eiK0·Rω(R) = 0, (69)

where µp is the reduced mass. Using the eikonal con-

ditions, of Eqs. (66) and (67) and with the coordinate
z axis along the incident wave vector K0, Eq. (69) re-
duces to the first-order equation for ω

∂ω
∂z

= −
iµp

h-2K0
Vptω. (70)

The solution of this equation, with the incident wave
boundary condition requirement that ω(z→−∞) = 1,
is

ω(R) = exp
{

−
iµp

h-2K0

∫z

−∞
Vpt(x, y, z′)dz′

}

, (71)

and yields the eikonal approximation to the wave
function

ψeik
K0

(R) = exp
{

iK0 ·R − i
h-v

∫z

−∞
Vpt(x, y, z′)dz′

}

, (72)

where v = h-K0/µp is the classical incident velocity in
the cm frame. Thus, the modulating function intro-
duces a modification to the phase of the incident plane
wave. This modification involves an integration along
the direction of the incident beam and, as such, as-
sumes that the effects of Vpt are accurately accounted
for by assuming the projectile traverses a straight line
path. The eikonal method is therefore more accurate
at forward scattering angles.

The eikonal wave function has incorrect asymp-
totics and so, to calculate amplitudes and observables,
must be used within a transition amplitude. Thus,
starting from the exact elastic transition amplitude

T(K0, K) = 〈K|Vpt|ψeik
K0

〉, (73)

the eikonal approximation to the elastic scattering
amplitude is

f0(K) = −
µp

2πh-2

∫

d R eiq·R Vpt(R)ω(R), (74)

where q = K0 −K is the momentum transfer. We shall
use a subscript zero throughout to denote quantities
calculated in the eikonal limit. Since |K| = |K0|, then
for small forward angles, q is almost perpendicular to

Figure 3 The straight line trajectory assumption of the eikonal
approximation.
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K0. In cylindrical polar coordinates,

R = b+ ̂K0z = b+z, (75)

where b is the impact parameter, Fig. 3, which lies in
the x–y plane. Thus we have

q ·R = q ·b+q · z ≈ q ·b. (76)

In addition, the product Vptω is known from Eq. (70)
and when substituted in Eq. (74) gives

f0(K) = − iK0
2π

∫

db eiq·b
∫∞

−∞
dz

∂ω
∂z

= − iK0
2π

∫

dbeiq·b
(

eiX0(b) − 1
)

, (77)

where the eikonal phase shift function, X0(b), is

X0(b) = − 1
h-v

∫∞

−∞
Vpt(R) dz. (78)

Since we are assuming a central potential, f0 will
also possess azimuthal (cylindrical) symmetry. The
azimuthal angle integration in Eq. (77) can therefore
be carried out giving the more familiar form

f0(θ) = −iK0

∫∞

0
bdbJ0(qb)[S0(b) − 1] , (79)

where q = 2K0sin (θ/2), θ is the scattering angle, and
S0(b) = exp [iX0(b)] is the eikonal elastic S-matrix el-
ement at impact parameter b.

One can obtain the same expression for the elas-
tic scattering amplitude by choosing the z axis to be
along the bisector of the incoming and outgoing mo-
menta, K0 and K. With this choice, we have q ·R = q ·b
exactly and so there are no small angle restrictions
in the amplitude. However, it should be remembered
that the z direction was originally chosen to be along
K0 in the wave function that enters the derivation of
the amplitude in Eq. (73).

Coulomb Interactions

In deriving X0(b) above, it was implicit that Vpt(R)
was such that Eq. (78) converges. This is certainly
the case for a short-range strong nuclear interaction.
When Vpt includes a Coulomb interaction then we ob-
tain a sum of phase shifts X0 = X0N +X0C of nuclear
and Coulomb terms. Due however to the 1/R be-
haviour of VC the Coulomb phase integral diverges
logarithmically and a screening radius, a, must be in-
troduced to shield the charge at large distances. This
screening affects the scattered intensity only at scat-
tering angles θC < (K0a)−1. Since a is typically of
atomic dimensions, for the incident energies of inter-
est the angle θC is much smaller than any at which
measurements are made. For angles θ ½ θC we ob-
serve particles whose impact parameters b ¼ a and
the Coulomb phase shift can be written (Glauber,
1959) as a sum of terms, X0C = X0ρ +Xa. The first
term depends on the form of the assumed Coulomb
interaction and Xa =−2η ln(K0a) is a constant screen-

ing phase in which η is the Sommerfeld parameter.
Thus the eikonal scattering amplitude for a screened
Coulomb potential is

f̄0(θ)=eiXa

{

f pt
C (θ)−iK0

∫∞

0
bdbJ0(qb)eiXpt [S̄0 −1]

}

, (80)

where f pt
C is the Coulomb amplitude for point charge

(Rutherford) scattering. The point Coulomb phase
shift appearing in the eikonal term is Xpt(b) =
2η ln(K0b). The Coulomb modified eikonal S-
matrix S̄0(b) characterises the deviations from point
Coulomb scattering and is

S̄0(b) = exp
[

iX0N + iX0ρ − iXpt
]

. (81)

The screening affects the scattering amplitude only as
an overall (constant) real phase Xa and has no conse-
quence for calculated observables.

§ 8. Noneikonal Extensions

In the previous section an approximate form for the
elastic scattering amplitude was derived within the
eikonal model. However, the eikonal approximation
is not necessary to write the scattering amplitude as an
impact parameter integral. Consider the exact scatter-
ing amplitude, written as a partial wave sum,

F(θ) =
1

2iK0

∞
∑̀
=0

(2`+1)P`(cos θ) [S`−1] , (82)

where P`(cos θ) is a Legendre polynomial. S` =
exp(2iδ` ) is the exact partial wave S-matrix element
obtained by solution of the radial Schrödinger equa-
tion for a given orbital angular momentum ` in the
presence of the assumed Vpt(R). The amplitude F can,
alternatively, be written as a continuous integral, a
Fourier–Bessel expansion,

F(θ) = −iK0

∫∞

0
bdbJ0(qb)a(K0, b), (83)

where the amplitude a(K0, b) is (Newton, 1966)

a(K0, b) =
1

K0b

∞
∑̀
=0

(2`+1)J2`+1(2K0b) [S`−1] . (84)

Equations (83) and (84) are exact and valid for all
energies and angles. On a purely mathematical note,
it has been pointed out by several authors that the
relation between F and a is not one-to-one due to a
lack of uniqueness in a. A detailed discussion of this
can be found elsewhere (Newton, 1966).

At high energies, we can make the (semi-classical)
correspondence between the orbital angular momen-
tum and impact parameter, 2`+1' 2K0b, and, in this
limit,

a(K0, b) ' S`−1. (85)

This association amounts to making the small wave-
length approximation discussed earlier and the scat-
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tering amplitude becomes

f(θ) = −iK0

∫∞

0
bdbJ0(qb) [S(b)−1]. (86)

Now S(b) = exp [iX (b)] is the continuation of S ` to
real noninteger angular momenta and coincides with
the physical S matrix whenever K0b−1/2 has integer
value. S(b) will be referred to as the exact continued
(EC) S matrix. It is important that Eq. (86) does not
require, and has not made, the eikonal approximation
to the scattering phase shift. The EC phase approach
can be viewed as replacing the eikonal phase X0(b) in
S0(b) = exp[iX0(b)] by an improved description using
the physical phase shifts, since

X (b) ≡ 2δ`, 2`+1 = K0b. (87)

The scattering amplitude of Eq. (86) goes beyond the
eikonal approximation of Eq. (79). We have adopted
the notation of a lower case f for this amplitude to
distinguish it from the exact amplitude F.

The formalism generalises to include the Coulomb
interaction where the exact partial wave amplitude is
now

F̄(θ) = f pt
C (θ) +

1
2ik

∞
∑̀
=0

(2`+ 1)P`(cos θ)e2iσ` [S̄`−1], (88)

where σ` is the Coulomb phase shift. The S̄` here,
obtained by matching to Coulomb functions the so-
lution of the radial Schrödinger equation in the pres-
ence of both nuclear and Coulomb interactions, char-
acterise only the deviations from point Coulomb scat-
tering. The EC equivalent of S̄ ,̀ S̄(b), is then used
in place of the Coulomb modified eikonal S matrix,
S̄0(b), in Eq. (80).

The Fourier–Bessel Expansion

These connections between the partial wave sum
and the impact parameter integral representations of
the scattering amplitude have also been discussed by
Franco and Glauber (1966) and Wallace (1973). They
showed that a formal connection between F and f
can be made using an expansion of the Fourier–Bessel
representation, Eq. (84), appropriate to high ener-
gies. They clarify that, in writing Eq. (79), in ad-
dition to the discrete-to-continuous variable transfor-
mation, only the leading term in the small angle ex-
pansion of the Legendre function has been retained.
This is the origin of the zeroth-order Bessel function
J0(qb). In the complete formal derivation of Wallace
(1973) an additional operator W(b) multiplies S(b)
such that

a(K0, b) = W(b)S(b)−1. (89)

It is well documented that the eikonal model
works rather well down to lower energies and to
larger angles than might be expected. One rea-
son for this is that there is considerable cancella-

tion between the higher-order correction terms in
the expansion of W about unity, arising from the
discrete-to-continuous variable transformation on the
one hand and the small angle approximation on the
other. Setting W(b) = 1 is therefore a remarkably good
approximation.

Corrections to the Eikonal Phase Shift

Wallace used the correspondence between the eikonal
phase and the expansion of the WKB phase shift as a
means of improving the eikonal amplitude. The WKB
phase is expressible (Wallace, 1973) as an expansion
in powers of a parameter e = 1/h-K0v,

XWKB(b) =
∞
∑
n=0

en

(n+1)!
Xn(b), (90)

Xn(b) = − 1
h-v

∫∞

−∞
dz

(

1
R

d
dR

)n [
R2n Vn+1

pt (R)
]

,(91)

with the eikonal phase shift as its n = 0 term. The
XWKB are themselves not exact and additional cor-
rections arise (Wallace, 1973). These corrections are
also expressible as an expansion in powers of ε. Re-
placing the eikonal phase shift X0 of Eq. (78) by these
expansions leads to an improved phase function.

When the Coulomb interaction is included screen-
ing need only be applied in the lowest-order (eikonal)
term. In higher order terms, VC appears in quadratic
or higher powers of (VN +VC). These terms make only
finite-range modifications to the integrals over z.

The effects of corrections up to third order have
been studied and are important for the scattering of
nucleons (Brooke et al., 1999). The effects become
more important as the scattering energy is reduced;
however, the expansion itself becomes unstable at en-
ergies below 25 MeV. For heavier projectiles K0 is
larger and these higher-order terms are less important.

§ 9. Eikonal Few-Body Models

The extension of the eikonal approximation to
few-body problems, the Glauber multiple-scattering
diffraction theory (Glauber, 1959), was proposed to
treat high-energy hadron–nucleus collisions. In addi-
tion to the eikonal assumption, Glauber’s model re-
quires that the internal motion of the constituents is
slow relative to their centre-of-mass motion, the adi-
abatic approximation discussed in §4.

Glauber’s Few-Body Model

Here, we are interested in the inverse kinematics pic-
ture to that discussed originally by Glauber in that the
projectile is the composite system. The derivation of
the cm scattering amplitude is, however, the same in
both cases. Our starting point is the adiabatic few-
body Schrödinger equation, Eq. (28). We next make
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an eikonal factorisation of the adiabatic wave func-
tion of Eq. (29) of the form

Ψeik
K0

({ri}, R ) = eiK0·R ω({ri}, R )φ(n)
0 ({ri}). (92)

Substituting this wave function into Eq. (28) and fol-
lowing the same arguments as in the point particle
case of §7, a first-order differential equation for ω is
obtained

∂ω
∂z

= −
iµp

h-2K0
U({Rj})ω({ri}, R ). (93)

Hence,

ω({ri}, R ) = exp
{

− i
h-v

∫z

−∞
U({R′

j})dz′
}

= exp

{

− i
h-v

n

∑
j=1

∫zj

−∞
Vjt

(
√

b2
j + z′j

2
)

dz′j

}

; (94)

where bj is the impact parameter for constituent j,
Fig. 4.

The few-body Glauber (FBG) scattering amplitude,
for a collision that takes the projectile from an initial
state φ(n)

0 to a final state φ(n)
α , can be derived following

the same steps as in the point particle case. The post-
form transition amplitude is now

T(Kα) = 〈φ(n)
α eiKα·R|U({Rj})|Ψeik

K0
〉, (95)

and, in keeping with the adiabatic approximation, if
|Kα| = |K0|, the FBG scattering amplitude is

f (n)
0 (Kα) = − iK0

2π

∫

dbeiq·b
∫∞

−∞
dz 〈φ(n)

α | Uω |φ(n)
0 〉. (96)

Using Eq. (93), we obtain

f (n)
0 (Kα) = − iK0

2π

∫

dbeiq·b 〈φ(n)
α |S(n)

0 ({bj})−1|φ(n)
0 〉, (97)

where

S(n)
0 ({bj}) = exp

[

i
n

∑
j=1

X0j(bj)

]

=
n

∏
j=1

S0j(bj). (98)

Figure 4 The full projectile S matrix is obtained from the indi-
vidual S matrices of its constituent clusters, each evaluated at its
own impact parameter.

Thus the total phase shift is the sum of the phase
shifts for the scattering of each of the projectile’s
constituents. This property of phase shift additivity
is a direct consequence of the linear dependence of
eikonal phases on interaction potentials.

A crucial point to make here is that this few-body
model applies only when the momentum transfer be-
tween the projectile and target is small relative to
the incident centre-of-mass momentum, since we have
continued to assume that q ·R≈ q ·b. This is certainly
a good approximation for elastic and mildly inelastic
collisions.

Multiple-Scattering Interpretation

The few-body Glauber model can be interpreted as a
multiple-scattering series by defining the profile func-
tions Γj, which are proportional to the transition am-
plitudes for j+ t scattering,

Γj(bj) = 1−S0j(bj). (99)

Thus

S(n)
0 ({bj}) =

n

∏
j=1

(

1−Γj
)

= 1−∑
j

Γj + ∑
j 6=k

ΓjΓk + · · · (−)n ∏
j

Γj . (100)

Substituted into Eq. (97) for the FBG amplitude we
see that the terms linear in Γj account for the single-
scattering (impulse approximation) contributions to
the amplitude due each of the constituents in the pro-
jectile. Subsequent terms provide double-, triple-, etc.
scattering corrections. Note that the order of the mul-
tiple scattering can be at most n since, due to the
forward (small angle) scattering assumption of the
eikonal model, once the target and a particular con-
stituent of the projectile have interacted, they will not
meet again. This would involve back scattering.

Coulomb Interactions

When one or more of the clusters is charged we follow
the same Coulomb screening arguments used above.
Now, for each charged cluster j, X j

0C(bj) =X j
0ρ(bj)+X j

a.

Since the screening phases X j
a = −2ηj ln(2K0a) depend

linearly on the Sommerfeld parameter of each cluster
ηj and η = ∑j ηj, these phases add to give the screen-
ing phase appropriate to the projectile Xa. The few-
body eikonal amplitude in the presence of nuclear and
Coulomb forces, analogous to f̄0 of Eq. (80), is there-
fore (omitting the overall screening phase)

f̄ (n)
0 (θ) = fpt(θ)

− iK0

∫∞

0
bdb J0(qb) eiXpt〈φ(n)

0 |S̄(n)
0 −1|φ(n)

0 〉, (101)
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where

S̄(n)
0 ({bj}) = exp

{

i
n

∑
j=1

[X j
0N(bj) +X j

0ρ(bj)]− iXpt(b)

}

.

(102)

The Recoil Limit Solution Revisited

The few-body Glauber approach provides further in-
sight into the recoil limit solution discussed in §6. It
was shown there that in the limit when just one of
the projectile clusters c interacts with the target, the
few-body adiabatic scattering amplitude can be fac-
torised into an amplitude describing the scattering of
a point-like particle with the mass of the projectile,
interacting via Vct, and the appropriate form factor
Fα0 that describes the projectile’s internal structure.
In the Glauber framework, the eikonal phase shifts
depend only on the incident velocities of the clusters,
which are of course the same as that of the whole pro-
jectile. Hence, the S matrices for the clusters are in-
dependent of their mass, and the point-like amplitude
in the recoil limit approximation is the amplitude for
the independent scattering of cluster c, evaluated at a
different momentum transfer. In fact, the cm momen-
tum of the projectile enters the amplitude expression
in two places: as a multiplying factor outside the b
integral and in the argument of the Bessel function.
Thus the cross section in the recoil limit, defined in
Eq. (60), is, in the Glauber framework

(

dσ(q)
dΩ

)

α
= |Fα0(γcq)|2 β2

c

(

dσ(βcq)
dΩ

)

c
, (103)

which follows from Eq. (97) by simple change of
variable in the limit that only one interaction is non-
vanishing. Here the point cross section of Eq. (60)
has been replaced by the physical cross section for the
scattering of cluster c, evaluated at a different momen-
tum transfer. The factor, βc, is

βc =
K0
Kc

=
mp

mc

(

mc +mt

mp +mt

)

, (104)

where Kc is the cm momentum of cluster c.
Equation (103) is useful if the differential cross

sections for both c+t and p+t scattering at the same
laboratory energy are known, since it can give infor-
mation about the structure of the projectile through
the form factor Fα0, provided of course that the re-
coil approximation is valid. Examples of such sys-
tems, as discussed in §6, are single-neutron halo nu-
clei, such as 19C, which can be treated as a two-cluster
(18C+n) system in which the 18C+target interaction
should dominate the 19C scattering process.

Noneikonal Corrections

The additivity of phases property of the Glauber ap-
proach suggests that improvements can be made by
replacing each eikonal phase shift function with a

more accurate one. Such noneikonal modifications
to the phase shifts of each cluster can be introduced
as was discussed for the case of point scattering ear-
lier. Indeed, recent studies have shown that including
corrections up to third order in ej (∝ K−2

j , where Kj

is the cluster–target cm wave number) improves the
accuracy of the few-body calculations to lower ener-
gies and larger scattering angles. For the scattering of
two- and three-body projectiles, such as the deuteron
and the halo nuclei, 11Be and 11Li, comparisons have
been made with the more accurate adiabatic model
calculations.

However, rather than develop and sum the ex-
pansion for the phase shifts in powers of e, a much
more efficient approach is to solve directly the ra-
dial Schrödinger equation for each cluster–target two-
body system at the required impact parameters and
hence noninteger orbital angular momenta λj = bjKj−
1/2. No eikonal assumptions need therefore be made;
however the model would still retain the adiabatic
and additivity of phases approximations. This is done
by replacing each eikonal phase shift S0j(b) by its EC
equivalent, Sj(b), defined in §8.

To generalise the formalism to include the Cou-
lomb interaction, the EC equivalent, S̄j(bj), of the
charged cluster S matrix, in the presence of both
Coulomb and nuclear interactions, replaces the cor-
responding eikonal one S̄0j(bj).

A subtlety of this approach is that, since each
charged cluster S matrix contains deviations from
point Coulomb scattering at its own impact param-
eter, bj, the point Coulomb phase shift must be incor-
porated within the cm b integral. Thus

S̄(n) =
n

∏
j=1

S̄j(bj)exp

[

n

∑
k=1

iX k
pt(bk)− iXpt(b)

]

. (105)

§ 10. Reaction Observables

Few-body impact parameter methods provide a con-
venient framework for calculating probabilities and
cross sections for a variety of processes involving pe-
ripheral collisions between composite projectiles and
stable targets. As has been emphasised throughout
this chapter, projectiles composed of a few loosely
bound clusters require nonperturbative methods due
to the importance of higher-order intermediate state
couplings. Impact parameter methods in general
have a long history of being applied to reactions
of loosely bound nuclei that predates the work of
Glauber. In particular, stripping processes, such as in
deuteron-induced reactions, have been studied using
approaches developed by Serber (1947). Variants of
such methods are still in use today due to the simple
geometric properties of the reaction processes at high
energies.
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In the few-body Glauber model, the differential
cross section for the scattering process defined by
Eq. (97) is

(

dσ
dΩ

)

α
= |f (n)(Kα)|2, (106)

and the total cross section for populating the final
state α is thus

σα =
∫

dΩ |f (n)(Kα)|2

=
∫

db |〈φ(n)
α |S(n)|φ(n)

0 〉−δα0|2 . (107)

It should again be noted however that such an expres-
sion is only valid at high beam energies and low ex-
citation energies since energy conservation is not re-
spected in this model. When α = 0, the total elastic
cross section is

σel =
∫

db |1−〈φ(n)
0 |S(n)|φ(n)

0 〉|2. (108)

The total cross section is also obtained from the elastic
scattering amplitude, employing the optical theorem,
to give

σtot = 2
∫

db
[

1−Re〈φ(n)
0 |S(n)|φ(n)

0 〉
]

. (109)

Hence, the total reaction cross section, defined as the
difference between these total and elastic cross sec-
tions, is

σR =
∫

db
[

1−|〈φ(n)
0 |S(n)|φ(n)

0 〉|2
]

. (110)

For projectiles with just one bound state, any ex-
citation due to interaction with the target will be into
the continuum. For such nuclei, which include the
deuteron and many of the neutron halo nuclei (such as
6He and 11Li), it is possible to describe elastic breakup
channels in which the target as well as each cluster
in the projectile remain in their ground states. For
simplicity of notation, we assume a two-body pro-
jectile with continuum wave function φk, where k is
the relative momentum between the two clusters, and
S = S (2)(b1, b2) = S1(b1)S2(b2) is understood. Elastic
breakup, also referred to as diffractive dissociation,
has amplitudes

f(k, θ) = −iK0

∫

dbeiq·b 〈φk|S|φ0〉. (111)

Making use of the completeness relation (when there
is only one bound state)

∫

dk |φk〉〈φk| = 1−|φ0〉〈φ0|, (112)

the total elastic breakup cross section is

σbu =
∫

db
[

〈φ0| |S|2|φ0〉− |〈φ0|S|φ0〉|2
]

. (113)

The difference between the reaction and elastic
breakup cross section is the absorption cross section,

σabs =
∫

db
[

1−〈φ0| |S|2|φ0〉
]

, (114)

which represents the cross section for excitation of ei-
ther the target or one or both of the projectile clusters.

The formula above can be understood by examin-
ing the physical meaning of |S|2 (= |S1|2|S2|2). The
square modulus of each cluster S-matrix element,
|Sj|2, represents the probability that it survives intact
following interaction with the target at impact param-
eter bj. That is, at most, it is elastically scattered.
At large impact parameters |Sj|2 → 1 since the con-
stituent passes too far from the target. The quantity
1−|Sj|2 is therefore the probability that cluster j in-
teracts with the target and is absorbed from the sys-
tem. Such a simple picture is useful when studying
stripping reactions in which one or more of the pro-
jectile’s clusters are removed by the target while the
rest of the projectile survives. Thus, the cross section
for stripping cluster 1 from the projectile, with cluster
2 surviving, is given by

σstr =
∫

db〈φ0||S2|2[1−|S1|2]|φ0〉. (115)

This cross section is seen to vanish if the interaction
V1t of constituent 1 with the target is nonabsorptive,
and hence |S1| = 1.

§ 11. High-Energy Eikonal Limit

This section demonstrates, using the high-energy limit
and a simple two-body structure model, that the few-
body structure of a nucleus has significant implica-
tions for the calculation and interpretation of cross
sections. These are important considerations when
measured cross sections are used to deduce nuclear
properties, such as their root-mean-squared (rms)
matter radii.

Theoretically, the situation is simpler at high en-
ergy because the interaction between each projectile
constituent and the target becomes essentially absorp-
tive. The constituent–target S-matrix elements S0j(bj)
can also be calculated reliably using the optical limit
of Glauber theory (Alkhazov et al., 1978) in which
correlations, internal to each j and to t, are neglected.
The S0j are then calculated, in eikonal approxima-
tion, from the first-order, multiple-scattering (tρρ) ap-
proximation to Vjt using the one-body densities ρj
and ρt of j and the target and an effective nucleon–
nucleon (NN) amplitude fNN. For a single nucleon,
then ρj(x) = δ(x).

Explicitly, the S0j in the optical limit (OL) are

SOL
0j (b) = eiX0j(b) = exp

[

i
∫∞

−∞
dzOjt(R)

]

, (116)

where Ojt is the double-folding integral

Ojt(R) =
∫

dxj

∫

dxt ρj(xj)ρt(xt) fNN(rjt), (117)

with rjt = |R + xj −xt|. Assuming a purely absorptive
and zero-range NN amplitude then it is usual (Alkha-
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zov et al., 1978) to associate

fNN(r) =
iσNN

2
δ(r), (118)

where σNN is the isospin average of the free NN total
cross sections. This is sometimes modified to account
(partially) for the effects of scattering in the nuclear
medium.

While, in the SOL
0j , we have neglected correlations

internal to each constituent and the target, we can
choose to retain or neglect the few-body correlations
between the constituents j of the projectile. Retaining
these, the projectile few-body elastic S matrix, con-
structed from the SOL

0j , Eq. (98), is

SFB
p (b) = 〈φ(n)

0 |∏
j
SOL

0j (bj)|φ
(n)
0 〉. (119)

If, on the other hand, we also neglect these few-body
correlations then the projectile optical limit S matrix,
SOL

p (b), must be calculated from Eq. (116), where the
overlap Opt is calculated from the projectile one-body
density ρp according to Eq. (117). This is equivalent
(Franco and Varma, 1978) to retaining only the first
term in the cumulant expansion of the projectile phase
shift function X0({bj}) = ∑jX0j(bj).

It is also instructive to note that, when each S0j is
described using the optical limit, Eq. (116), then the
projectile OL S matrix, SOL

p , is equivalent to approx-
imating Eq. (119) by its no-breakup or folding model
potential eikonal S matrix, Eq. (4), i.e.,

SOL
p (b) = exp

[

i〈φ(n)
0 |X0({bj})|φ(n)

0 〉
]

= exp [iXp(b)].(120)

This is to be contrasted with the correlated few-body
expression,

SFB
p (b) = 〈φ(n)

0 |exp [iX0({bj})]|φ(n)
0 〉. (121)

The effects of an explicit treatment of projectile
breakup channels can therefore be examined using
Eqs. (121) and (120). These equations clarify that the
assumption of uncorrelated particle motions, which
underlies the optical limit of the eikonal theory, is in-
consistent with a realistic treatment of the continuum
excitations of weakly bound few-body nuclei.

To evaluate SFB
p and SOL

p using realistic theoret-
ical inputs is a reasonably involved numerical task.
We therefore use a simple two-body model, involving
Gaussian densities, to expose the consequences of the
two calculations. For this analysis the zero-range tNN
is adequate to clarify these differences.

Binary Cluster Model

We consider a two-body projectile with mass mp, con-
sisting of valence and core clusters of masses mv and
mc bound in a state of relative motion, Fig. 5. For
simplicity the internal densities of the clusters are de-
scribed by single Gaussian functions with ranges αc

Figure 5 The two-cluster projectile coordinates relative to the
target. The co-ordinate z axis, the projectile beam direction, is
directed into the page.

and αv, i.e.,

ρc(r) = mcg(3)(αc, r), (122)

and similarly for ρv. Here g(3) is the normalised three-
dimensional Gaussian function

g(3)(γ, r) = (
√

πγ)−3exp (−r2/γ2), (123)

which has mean squared radius 〈r2〉 = 3γ2/2. If we
also assume that the relative motion wave function
φ(2)

0 (r) of the two clusters is a 0s oscillator state of
range parameter α then of course

|φ(2)
0 (r)|2 = g(3)(α, r), (124)

with mean squared c–v separation 〈r2〉 = 3α2/2.
This model allows us to construct explicitly the

projectile single-particle density needed for the OL
calculation. Convoluting the intrinsic cluster densi-
ties with their motions about the cm of the projectile,
this is

ρp(r) = mcg(3)(α̂c, r) +mvg(3)(α̂v, r), (125)

where the new Gaussian range parameters are

α̂2
v = α2

v +
(

mcα
mp

)2

, α̂2
c = α2

c +
(

mvα
mp

)2

. (126)

The model thus produces a two-component projec-
tile density, due to v and c, containing different num-
bers of nucleons, and with different spatial exten-
sions. Such simple two-component forms have been
used widely to model density distributions of light ex-
otic nuclei (Hansen et al., 1995). The mean squared
radius of p, 〈r2〉p, satisfies

mp〈r2〉p = mc〈r2〉c +mv〈r2〉v + (mvmc/mp)〈r2〉

= (3/2)
(

mvα̂2
v +mcα̂2

c

)

. (127)
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The model shows that fixing ρp(r), by a given (mc,mv)
mass split and choice of the two convoluted ranges
(α̂c,α̂v), does not specify the underlying structure of
the projectile. Equation (126) shows that any fixed
density is consistent with an infinite number of two
cluster structures having different c and v rms sizes
and separations. Specifically, for a fixed projectile
density, α can take on all values from zero to an upper
limit

αmax = min[(mp/mc)α̂v, (mp/mv)α̂c], (128)

at which one or other of the cluster densities must be
pointlike. If one of the original clusters is pointlike,
e.g., αv = 0, then fixing α̂v and α̂c does uniquely de-
termine α and hence αc.

Assuming the target nucleus is also described by a
Gaussian density of range αt, then the OL and FB ex-
pressions for Sp take particularly simple forms. Now,
in Eq. (120),

Xp(b) = i
σNN

2
mt[mcg(2)(α̂ct, b) +mvg(2)(α̂vt, b)], (129)

where g(2)(γ, b) = (
√

πγ)−2exp (−b2/γ2) is the nor-
malised two-dimensional Gaussian, α̂2

vt = α̂2
v +α2

t , and
similarly for α̂2

ct. The FB S matrix, Eq. (121), is

SFB
p (b) =

∫

dsg(2)(α, s)exp [iX0c(bc) + iX0v(bv)], (130)

X0j(bj) = i
σNN

2
mtmjg

(2)(αjt, bj) (131)

with s being the projection of r in the impact parame-
ter plane and bc = |b−mvs/mp| and bv = |b+mcs/mp|
are the impact parameters of the core and valence
clusters, Fig. 5. In this case α2

jt = α2
j + α2

t , from the
convolution of the each cluster and the target density.
The two expressions are seen to agree only in the α→0
limit, when the two-body model reverts to a descrip-
tion based on a single centre, and so the two-body
correlations are removed.

Reaction Cross Sections

The OL and FB approaches have implications for the
calculated elastic scattering differential cross section
and the total and integrated elastic cross sections, Eqs.
(109) and (108) of §10. To demonstrate these effects,
Fig. 6 shows the calculated reaction cross sections,
Eq. (110),

σR = 2π
∞
∫

0

dbb
[

1−|Sp(b)|2
]

, (132)

using σNN=4.11 fm2, appropriate to 800 MeV per nu-
cleon projectile incident energy. We take as a repre-
sentative case mp=10, 〈r2〉1/2

p =3.10 fm, with (mc, mv)

= (8, 2) and mt=12, 〈r2〉1/2
t =2.32 fm. The range pa-

rameters α̂v and α̂c are such that mvα̂2
v = mcα̂2

c , so the
c and v make equal contributions to the projectile rms

Figure 6 Few-body (FB) and optical limit (OL) calculations of
reaction cross sections for a mp=10 projectile, composed of mc=8
and mv=2 clusters, as a function of the assumed rms separation
of c and v . All calculations correspond to the same projectile
one-body density, shown as an inset.

matter radius, Eq. (127), ensuring sufficient emphasis
is given to the valence particles.

These parameters fix ρp(r), SOL
p and hence the OL

reaction cross section, the dashed line in Fig. 6, inde-
pendently of the underlying cluster sizes and separa-
tions. The FB cross sections are shown by the solid
symbols and line in the figure as a function of the rms
separation of c and v. As the figure indicates, the c
and v internal densities must become more localised
at large rms separations to maintain the fixed ρp. The
limiting situation is where one valence cluster is point-
like when the maximum differences between the cross
sections calculated using the FB and OL theories are
manifest.

The Role of Breakup

Although the calculations of Fig. 6 use a simple
model, the key result, that the FB reaction cross sec-
tion is smaller than that of the OL calculation, is a
quite general consequence of Eqs. (120) and (121)
when the underlying constituent–target interactions
are entirely absorptive, and hence the X0j are purely
imaginary. This follows from the real variable in-
equality (Johnson and Goebel, 2000)

exp (y) ≥ 1+y, (133)

which results from the upward concavity of the ex-
ponential function. From this follows the similar in-
equality between expectation values of an Hermitian
operator Y, i.e.,

〈exp (Y)〉 ≥ 〈1+Y〉, (134)
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and, writing Y = F−〈F〉, where F is clearly also Her-
mitian, the latter inequality can be recast as

〈exp (F)〉 ≥ exp 〈F〉. (135)

Therefore with F = iX0({bj}), which is real for absorp-
tive Vjt, and taking the projectile ground state expec-
tation value proves that for all b, SFB

p (b) ≥ SOL
p (b),

where |Sp(b)| ≤ 1. It follows that σOL
R ≥ σFB

R .
It should be pointed out, therefore, that includ-

ing the effects of breakup of the few-body projectile,
through Eq. (121), actually reduces the calculated re-
action cross sections when compared to the use of the
no-breakup optical limit, using Eq. (120). As is re-
vealed by the inequality SFB

p ≥ SOL
p , overall, the ex-

plicit treatment of the few-body nature of the projec-
tile results in the collision being more transparent and
less absorptive. The reason for this is that, in many
configurations of the spatially separated constituents,
they do not overlap and interact with the target. This
additional transparency, due to the granular nature
of the projectile, is shown here to more than compen-
sate for the additional absorption due to removal of
flux from the elastic channel into the, now included,
breakup channels.

It follows that if one compares measured high-
energy cross sections with those obtained from σOL

R ,
to deduce interaction radii, or nuclear sizes, then these
sizes will be an underestimate of the actual spatial ex-
tent of the nuclei in those cases where the projectile
has a well-developed few-body internal structure.

§ 12. Summary and Outlook

In this chapter we have reviewed the underlying
principles, methodologies and resulting formalism of
available fully quantum mechanical, adiabatic and
eikonal based nonperturbative theoretical schemes
for obtaining approximate solutions of the time-
independent few-body Schrödinger equation. We
have shown that these few-body methods offer both
practical calculational schemes and considerable in-
sight into the interplay of nuclear structure and dy-
namics in reaction studies.

Such techniques are in the forefront of contempo-
rary nuclear physics research due to their applicabil-
ity to and power to interpret nuclear reactions used
to probe the spectroscopy of rare light isotopes at the
limits of nuclear stability. Interest in such nuclei is
driving systematic theoretical examinations of both
the limits of applicability of these different models
and of their leading corrections. Impact parameter-
based methods provide a powerful tool for studies
of reactions with n>2 projectiles and their extension
to lower energies is of importance. The question
of convergence of the CDCC coupled channels ap-

proach when including Coulomb tidal forces is being
addressed but remains to be answered. The develop-
ment of practical fully dynamical (nonadiabatic) ap-
proaches for n>2 projectiles remains a very significant
long-term challenge.

See also: Direct reactions, Distorted waves meth-
ods, Coupled channels methods, Elastic scatter-
ing, Inelastic scattering, Breakup reactions
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