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Adiabatic and eikonal theoretical methods being developed for and applied to halo
nucleus-target scattering and reactions are outlined. Approximation schemes which were
adequate for calculations of reaction cross sections in collisions of tightly bound nuclei are
shown to be inadequate when applied to loosely bound extended halo nuclei. Few-body
calculations of angular distributions for ®He and 'Be scattering are also discussed and
the treatment and importance of non-eikonal corrections are investigated.

1. INTRODUCTION

In nuclear fragmentation reactions light nuclei with exotic combinations of neutrons and
protons are produced which extend to the very limits of nuclear stability — the neutron
and proton driplines. These nuclei display new physical phenomena, such as the neutron
halo, and are most effectively treated as a highly correlated motion of a relatively few
constituent bodies. Unlike stable (N & Z) nuclei which possess well developed excited
state spectra and are thus amenable to a variety of spectroscopic methods and tools,
dripline nuclei often possess a single (particle stable) bound state. Halo nucleus sizes and
structures must therefore be deduced indirectly from their cross sections and responses to
strong and electromagnetic probes. These deductions require practical quantitative quan-
tum mechanical calculations for the structures and reactions of such few-body systems.

In this paper we review briefly the assumptions underlying eikonal treatments of the
interactions between composite nuclei. We show that these methods offer a theoretical
framework from which to develop calculations of reactions of loosely bound few-body
composites such as halo nuclei. We first discuss briefly recent work [1-3] which reveals the
importance of an explicit treatment of the few-body nature of halo nuclei for calculations
of reaction cross sections at high energies (= 800 MeV per nucleon) — and hence for
values of the matter radii of halo nuclei deduced from comparisons with experiment. We
then consider the role of these few-body degrees of freedom in calculations of composite
projectile scattering at lower projectile energies, presenting six-body calculations of 8He
scattering at 60 MeV per nucleon and three-body calculations of 'Be scattering at 50
MeV per nucleon. In the latter case we present a prescription for including the leading
order corrections to the lowest order eikonal theory for few-body projectiles. We show
that such corrections are readily applied and are necessary at incident energies of order
50 MeV per nucleon and below.
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2. ADIABATIC AND EIKONAL APPROXIMATIONS

Accurate coupled channels schemes have been developed for treating the effects of
continuum coupling in the scattering of a weakly bound two-body composite, e.g. [4]. Tt
is doubtful however whether such methods will ever offer practical calculations for more
complex systems. These coupled channels methods have however provided an assessment
of more efficient adiabatic methods which offer practical approximate calculations for
two-body projectiles [5] and have very recently been reported for three-body projectiles
[6]. In turn, these adiabatic calculations provide an assessment of more efficient eikonal
methods such as will be discussed here. Eikonal models have now been applied extensively
for the calculation of angular and breakup momentum distributions of projectiles with a
dominantly two- or three-body structure, such as ''Li [7-9], ®B [10], ''Be [11] and Be
[12].

For a point particle (j) being scattered from a target nucleus by a central interaction
V; the eikonal approximation to the elastic S-matrix is [13]

S0 = espli®)] . ) = [ VT2 | (1)
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where v is the asymptotic relative velocity and the z-axis is in the incident beam direction.

X;, referred to as the eikonal phase, is the integral of the interaction along the assumed
straight line path of the particle at an impact parameter b.

For a composite projectile, in addition to the straight line trajectory approximation, all
eikonal approaches start from the assumption that the motions of the particles internal
to the projectile (and target) are slow compared to the relative motion of their centres of
mass — the adiabatic or sudden approximation limit. For an assumed n-body composite
projectile p, with ground state \Q)(()")), the projectile-target elastic S-matrix for projectile
centre of mass impact parameter b is then [13]
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where, as above, each §; is the elastic S-matrix for constituent j scattering independently
from the target at its individual impact parameter b;.

3. REACTION CROSS SECTION CALCULATIONS

Until very recently, halo nucleus matter radii and hence halo sizes have been deduced
by comparing interaction or reaction cross section measurements made at high energy
[14,15] with model calculations which use the optical limit (OL) of the eikonal theory [16].
The OL approximation computes S, using Eq. (1), replacing the full projectile-target two-
body interaction V,, by the single scattering ‘tpp’ approximation to the multiple scattering
expansion for the nucleus-nucleus optical potential [17], that is

Vo(R) = [ dry [ drapy(r) pulra)tun (R 471 = 7). 3)
For an absorptive zero-range nucleon-nucleon (NN) amplitude and a 7" = 0 target,

tNN(’I‘) = (fw&NN/Qi)(S(r) s (4)



where oy is the average of the free nn and np total cross sections at the appropriate
relative velocity. Calculation of Spo L and the reaction cross section thus involves only the
projectile and target ground state densities, p, and p;, and neglects correlations between
constituent nucleons in the projectile or target [17]. This formulation has been assessed
and found to be reliable for both nucleon-nucleus and nucleus-nucleus collisions of regular
(well bound) nuclear systems at sufficiently high energies, e.g. [18].
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Figure 1 shows the results of OL and FB calculations using a number of assumed two-
and three-body wavefunctions for the projectiles. We show the calculated cross sections
versus the projectile rms matter radii. The horizontal bands show the experimental
datum and error in each case, o(*'Li) = 1060 & 10 mb [20], o(**Be) = 942 + 8 mb [15],
o(®B) = 798 £ 6 mb [2]. The (lower) full symbols and/or solid lines are the results of the
FB calculations for different wavefunction models.

The (upper) open symbols and/or dashed lines are the OL calculations using the pro-
jectile density p, calculated from the same wavefunctions. We see that the correlated



granular structure of the projectiles, included explicitly in the FB approach, reduces
considerably the calculated reaction cross sections compared to OL estimates and thus
increases significantly the values of rms matter radii deduced from the experimental data.
Deduced matter rms radii for "Li and YBe, 3.53 & 0.10 fm and 2.90 & 0.05 fm, are
increased by 14.0% and 7% over the OL values (vertical lines). The radius for MLi is
consistent with models with a significant 1s-wave intruder state component and that for
1Be is consistent with models which include core excitation and reorientation [2].

4. ELASTIC SCATTERING OF HALO NUCLEI

We now turn our attention to calculations of elastic scattering of few-body projectiles
at energies of between 30 and 100 MeV per nucleon. At these lower energies the reaction
mechanisms are more complex and the OL theory is not an adequate basis even for
the determination of the underlying projectile constituent-target interactions. At these
energies the interactions in the two-body subsystems are deduced, as far as possible, from
empirical data and established theoretical models for stable nuclei.

4.1. Application to ®*He elastic scattering

We present a new application of the FB eikonal model to 8He+!2C scattering, an
assumed a+4n+target six-body problem. We compare our calculations with new mea-
surements of the quasielastic cross section angular distribution for this system at 60 MeV
per nucleon incident energy [21]. Details of the experimental setup are given in [22].

8He is the lightest nuclear system to display a neutron skin, as opposed to a very dilute
one- or two-neutron halo. In ®He the four valence neutrons are assumed to move about
a localized « particle core. The cluster orbital shell model approximation (COSMA)
wavefunction for ®He [23] suggests an rms n-a separation of 3.5 fm, compared to the «
rms matter radius of 1.45 fm, and thus generates a two component ground state density.
8He can therefore be thought of as a prototype for reaction studies of heavier neutron
dripline systems with a many-neutron skin.

The amplitude for elastic scattering of the ¥He composite through angle 6 is [13]

fal®) = =i [~ dbb Jo(ab) [Ss(0) = 1] . (5)

an integral over impact parameters b of the projectile’s centre of mass. Here ¢ =
2K sin(6/2) is the momentum transfer with K the incident wavenumber in the c.m. frame.
A discussion of the treatment of the Coulomb interaction within the eikonal model can be
found elsewhere [8]. Here we assume the Coulomb interaction acts at the projectile c.m.

The composite nature of the assumed five-body projectile appears through the eikonal
S-matrix Sg(b) which, from Eq. (2), is

54(6) = (@154 (b2) TT Si(6)/0F) | ©
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where |(I>é5)> is the projectile ground state. The interactions V; (j = «,1,...,4) of the
a and four neutrons (i = 1,...4) with the target enter through their eikonal S-matrices,
computed at each impact parameter b; (see Figure 2) according to Eq. (1).



To compute the spatial integrals involved in
Eq. (6) we make use of random sampling in-
tegration. In this study we use the harmonic
oscillator based COSMA wavefunction for *He
[23] which provides an analytic expression for
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cillator orbital with respect to the a core.

feorr 18 given explicitly in [23] where the 7; are the position vectors of the neutrons relative
to the a core, see Figure 2.

The calculations sample at random the four neutron positions r; at each ®He c.m.
impact parameter b. The positions x, = — >, m,r;/(4m, + m,) and x; = r; + =,
of the core and neutrons relative to the projectile c.m. and the impact parameters b; of
each constituent can then be computed. In each such configuration f.,,.. is calculated and
the S;(b;) are interpolated from a pre-calculated lookup table. The form of the COSMA
wavefunction and calculation outlined above shows that we include explicitly both angular
and antisymmetrisation correlations and c.m. correlations associated with the finite mass
of the a core; imposed by the vector relationships between the x; and x,,.

4.2. Results of calculations

We apply the formalism above to the scattering of 8He from '2C at 60 MeV per nucleon.
The additional inputs required are an a+'2C and a n+'2C interaction. The n+'2C poten-
tial used is that tabulated in [8] and used previously for ''Li [8] and ' Be [11] scattering at
similar energies. For the a+12C system we use a density dependent double folding model
interaction [24] calculated using the BDM3Y1 effective interaction [21].
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The 8He+12C effective interaction used in the DWBA was calculated numerically from the
deduced FB eikonal phase yg(b) = —iln Sg(b) using Eq. (7) of [26]. Its real and imaginary
formfactors are shown by the solid curves in Figure 3. The absorptive potential is seen to




be large, of order 60 MeV deep, to be compared with the a potential absorption of only
22 MeV. The importance of the breakup degrees of freedom are evident upon comparing
this effective ®He potential (in particular the absorption) with that obtained from the
folding model (the no breakup limit) shown by the dashed curves in the Figure.

The elastic and 2% and 3~ inelastic — T
scattering angular distributions (ratio N oo
to Rutherford) calculated using the FB 0
model are shown by the long dashed, dot-
dashed and short dashed curves in Figure
4. The sum, shown by the solid curve,
can be compared with the data. We ob-
serve that the magnitude and forward an-
gle oscillations in the data are reasonably
reproduced and that the inelastic channel v

Summed

AN inelastic 3’ N
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a cross section of the required magnitude P
at the larger angles. More extended inves- ,' i/
tigation reveals [21] that the calculations 3t I
show considerable sensitivity to a cor- 0 S 10 15 20 25
rect treatment of the c.m. correlations in o fdnarane '
the composite projectile. Accurate elastic Figure 4. Experimental and calculated
rather than quasielastic scattering data at SHe+'2C cross sections at 480 MeV. The
similar energies are needed to assess these curves show the elastic, inelastic and
quantitative theoretical questions further. summed quasielastic calculations.

This example shows that the eikonal model provides a rather effective basis for the
calculation of reactions of few-body projectiles. This efficiency arises from the use of the
adiabatic approximation and also the very simple form of each two-body eikonal phase
and S-matrix. Given the efficiency of the method it is worthwhile to investigate leading
order corrections to the model in an attempt to assess and extend its accuracy. In the
following we outline such an assessment using a three-body system where fully non-eikonal
(adiabatic) calculations are also possible.

5. GOING BEYOND THE EIKONAL APPROXIMATION

UBe is a good example of a binary, °Be+n, single neutron halo nucleus and one for
which there are preliminary elastic scattering data available. For a two-body projectile
full quantum mechanical calculations which use the adiabatic approximation but not the
additional eikonal assumption can be performed [5] and used to assess the importance
of (non-eikonal) corrections to the lowest order theory. Calculated cross section angular
distributions which include non-eikonal modifications will be shown to be accurate at
larger scattering angles and at lower energies.

For the two-body (core+n) projectile the FB elastic amplitude is given by Eq. (5), but
now Sy(b) = (O] S.(be) S, (by)| D). From Eq. (1), S;(b;) = explix;(b;)] (j = ¢, n) where
Xe and Y, are the eikonal phases for the core- and n-target subsystems.

Following Wallace [27] we use a correspondence between the eikonal phase and an



expansion of the WKB phase shift. The latter, X}’VK B can be expressed as an expansion
in powers of € = 1/hAKv about the eikonal phase

WKB - " n n 1 /oo 1d " 2n 17 n+1
/ b) — _c v(p) = — d» [ = 2 V. 7
W0 =3 a0 0 =g [ (L) el
which appears as the lowest order n = 0 term [28]. These X}’VKB are not exact and the
required correction terms were clarified by Rosen and Yennie (RY) [29]. Our prescription
for improving the phases in the FB model is to replace the eikonal phase for each particle

j by [11]
Xi = xp PN (8)

where the second term accounts for the RY corrections, also expressed as an expansion
in powers of €. The treatment of the Coulomb interaction is discussed in detail in [11].
The generalisation of the method to many-body systems is obvious since the corrections
proposed retain the independent scattering feature of the lowest order theory.

We apply this formalism to the 'Be+'2C system and compare our non-eikonal calcu-
lations with exact adiabatic solutions of the three-body Schrodinger equation. The '!Be
ground state wavefunction was taken to be a pure 25/, neutron single particle state, with
separation energy 0.504 MeV, calculated in a central Wood-Saxon potential of geometry
ro = 1.00 fm and ay = 0.53 fm. Assuming a '°Be core rms matter radius of 2.28 fm this
generates a 'Be composite with rms radius of 2.90 fm [2].

Figure 5 shows the calculated elastic dif- 1 1o ' '
ferential cross section angular distribu- Be+ C E;;=542.3 MeV
tions (ratio to Rutherford) for 'Be+'2C A
scattering at 49.3 MeV per nucleon to- %
gether with the GANIL data. The dashed .0’
curve shows the cross section in the

absence of breakup contributions: the ¢
scattering solution for the single fold-
ing model interaction. The dot-dashed }
curve shows the results of the conven- | P4 .. No breakup
tional (lowest order) eikonal model cal- —— Adiabatic exact
culation, which includes "'Be excitation —m Eikonal

and breakup channels. The results ob- | | 777 Eikonal+corrections
tained when including the non-eikonal J : : : :
corrections to the core (1“Be) and neu- 0 5 1015 20 25

tron phases are shown by the long-dashed e frnmnen '
curve which are seen to agree to high pre- Figure 5. Calculated and experimental
cision with the exact adiabatic model cal-  'Be+'2C cross sections at 49.3 MeV per

culations, presented by the solid curve. nucleon.

These calculations include WKB and RY correction terms up to n = 3 in Eq. (7). At
this order in € other sources of non-eikonal corrections arise which destroy the simplicity
associated with the independent scattering picture of the process. It is therefore inap-
propriate to include higher order WKB and RY terms without due consideration of these
correlated scattering terms.



Several points are evident: (i) projectile excitation and breakup effects are large, (i7) at
energies of order 50 MeV per nucleon there are already discrepancies between exact and
eikonal model calculations at the scattering angles displayed which are typically greater
than the error bars already achieved on the experimental data, (ii7) the inclusion of non-
eikonal corrections improves the accuracy of the calculated observables. This is achieved
at a small fraction of the computational cost of carrying out the full partial wave, coupled
channels, solution of the adiabatic Schrodinger equation.

Figure 6 presents similar calculations for
incident 'Be energy to 25 MeV per nu-
cleon where the non-eikonal effects are
larger. We note the continued success
of the non-eikonal modifications to the
few-body amplitude to correct the eikonal
calculation very accurately over a signif-
icant range of scattering angles. Thus,
a simple physical prescription which ex-
tends the range of applicability of eikonal
model calculations for few-body systems
is to include the WKB and RY correc-
tions to the eikonal phase in each projec-
tile constituent-target two-body channel,
prior to the projectile ground state aver-
age being carried out. In the two-body
projectile case this is shown to result in
excellent agreement with exact adiabatic
calculations for an expanded and useful
range of c.m. scattering angles.

A natural expectation, given the explicit
spatial averaging in the composite pro-
jectile S-matrix in the eikonal model, is
that this S-matrix, and hence the cal-
culated cross section angular distribu-
tions, should reflect the spatial extent
of the core-valence particle relative mo-
tion wavefunction. In Figure 7 we as-
sess this sensitivity by showing the cal-
culated elastic differential cross section
angular distributions at 49.3 MeV/A for
projectile wavefunctions with rms matter
radii of 2.70 fm (long dashed curve), 2.90
fm (solid curve) and 3.10 fm (dot-dashed
curve). The origin of this sensitivity has
been clarified within the adiabatic model
by Johnson et al. [30].
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Figure 6. Calculated 'Be+'2C cross sec-
tions at 25 MeV per nucleon.
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Figure 7. "' Be+!2C cross sections for wave-
functions with different rms radii.



The model used, in which the core target interaction is assumed to dominate, is reported
in a contribution to this meeting [30].

6. SUMMARY AND CONCLUSIONS

In this paper we have considered the way in which, for halo nuclei, nucleus-nucleus
total reaction cross sections and elastic scattering differential cross section angular dis-
tributions require the few-body nature of the loosely bound composite structures to be
treated explicitly. We have considered the optical limit and few-body approaches to the
calculation of reaction cross sections and shown that the OL theory consistently overes-
timates calculated cross sections and hence underestimates the nuclear size determined
from comparisons with experimental data.

We have also presented eikonal model calculations for 8He scattering. The approach
used makes such six-body calculations practical by exploiting the simplicities brought
about by the eikonal and adiabatic treatment of the motions of the projectile constituents.
The magnitude and angular distribution of the measured 8He quasielastic cross section are
found to arise naturally from the presented few-body model without parameter variation.

Finally we have proposed a simple physical prescription to enhance the accuracy and
extend the range of applicability of the eikonal model calculations for few-body systems.
The enhancement retains the essential simplicity of the eikonal model calculations, the
independent scattering of the constituent particles, but leads to significantly more accurate
calculations in the case of ' Be scattering considered here. The corrections can be simply
incorporated for more complex systems, such as the ®He case considered here, and in the
calculation of breakup momentum distributions and other experimental observables.

The author gratefully acknowledges the theoretical contributions of J.S. Al-Khalili, J.M.
Brooke and I.J. Thompson, and the experimental contributions of M.D. Cortina-Gil, P.
Roussel-Chomaz (for the ''Be data), M. Zahar, M. Belbot, J.J. Kolata, K. Lamkin D.J.
Morrissey, B.M. Sherrill, M. Lewitowicz and A.H. Wuosmaa (for the ®He data) to this
work.
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