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Abstract

In these lectures we discuss theoretical techniques for obtaining approximate descriptions
of the scattering and reactions of composite nuclei over a wide range of incident energies.
The approaches used calculate approximate solutions of the time-independent few-body
Schrodinger equation containing two-body effective interactions between the particles. Such
solutions are particularly important in direct nuclear reactions applications. We focus on
projectile (or target) nuclei with structures which, to a good approximation, can be described
as strongly correlated n-body systems. These n bodies can be individual nucleons or more
massive clusters of many nucleons but are usually very much fewer than the number of
nucleons m, in the projectile. The deuteron and the three-nucleon systems >H and *He are
exceptions for which the methods discussed are also applicable. Loosely-bound neutron-
and proton-rich nuclei and highly clustered light nuclei such as %Li and 7Li are usefully
described as effective few-body systems and, when interacting with strong or electromagnetic
probes, require the techniques presented here to account for their elastic scattering, inelastic
excitation and breakup. Particular applications are provided as references.



I. INTRODUCTION

These notes deal exclusively with non-perturbative approaches. Methods such as the dis-
torted waves Born approximation (DWBA), which treat the reactions as a first-order tran-
sition between mean field states, and their multi-step generalisations, are discussed compre-
hensively elsewhere [1, 2]. Similarly, perturbative semi-classical trajectory methods, inspired
by Coulomb excitation theory, have been the subject of definitive texts [3] and reviews [4, 5].
We will also not discuss explicit time-dependent non-perturbative methods as there have
been very few practical applications for non-nucleonic few-body nuclear systems [6].

In Sections IV through VII we discuss fully quantum mechanical approaches based on cou-
pled channels and adiabatic approximations. Sections VIII through XII discuss eikonal,
and more general impact parameter based theoretical approaches, applicable to few-body
systems.

II. FEW-BODY MODEL SPACE

We consider the scattering of a n-body projectile nucleus p with incident laboratory energy
Ejp by a structureless target ¢ of mass m; and charge Z;. The projectile ground state
is assumed to be a bound state ¢(()n) of the n constituents with individual masses m; and
charges Z;. Each constituent j will be assumed to interact with the target through a two-
body effective interaction Vj; which in general is complex. In applications, the Vj, are
usually identified with the energy-dependent phenomenological optical potentials obtained
by fitting reaction data for each jt binary sub-system at the same incident energy per
nucleon. Alternatively, they are calculated from theoretical multiple scattering or folding
models. These effective interactions will be assumed central throughout.

In many cases, such as the deuteron, °Li and the neutron rich light nuclei °He, 'Li, and '°C,
the projectile has only one particle stable bound state. The tidal forces on the projectile
constituents will therefore couple the projectile strongly to the continuum. A major moti-
vation for the few-body models discussed here is the realistic treatment of, and insight into
the importance of, these breakup effects on scattering and direct reaction measurements and
their interpretation. The coupling between these continuum excited states is also extremely
important [7] and their inclusion is an important feature of all the approaches presented.

We adopt the system of coordinates shown in Figure 1 where the set of vectors {7} refer to
the n — 1 independent internal spatial coordinates of the projectile. These will be clarified
in individual applications. Vectors {Z,} refer to the n projectile centre of mass (cm) to
constituent separations, R is the target-projectile cm separation and the ﬁj =R+ 7; are
the 7 constituent coordinates relative to the target. The coordinate z—axis will be chosen
along the incident beam direction K.



FIG.1 Definition of the coordinate vectors used in the case of a three-body projectile.

The Schrodinger equation satisfied by the scattering wave function of our effective n + 1-
body (projectile and target) system, U when the projectile is incident with wave vector

K in the cm frame, is
B =1 By —
[H - E]\Ilf(‘o ({rl}aR)_O ) (1)

with total Hamiltonian ‘H = Tx + U({é]}) + H,. Here H, is the internal Hamiltonian for
the projectile and T is the projectile cm kinetic energy operator. U({E,}) = i1 Vie(Rj)
is the total interaction between the projectile and the target. The n-body projectile ground
state wavefunction ¢ satisfies

H, 68" ({7:}) = —e0 6V ({73}) - 2)

H, will also generate an excited continuum spectrum and may support a finite number of
bound or resonant excited states. We seek solutions of the few-body scattering wave function

\IJ(I;O) which satisfy the scattering boundary conditions

WD ({7}, B) = Ko gV ({7}) + outgoing waves . (3)

For a projectile with a single bound state, the outgoing waves include only elastic scattering
and elastic break-up channels. More generally, the outgoing waves will also include terms
from any inelastically excited bound states. The incident plane wave boundary condition
stated in Eq.(3) is of course strictly correct only in the presence of screened Coulomb in-
teractions. All formulae we use can be justified, as is usual, by considering the limit of the
appropriately screened Coulomb problem.

It is implicit in the following that the methods we discuss yield only approximate solutions
of the physical n-body problem. In particular one- and multi-constituent rearrangement
channels are absent in the asymptotic (R — o) regions of the derived solutions, due to our
use of complex constituent-target interactions and radial and orbital angular momentum
truncations [8]. In fact, all the theoretical schemes calculate approximations to U which
are expected to be accurate representations of the n-body dynamics only within a restricted
volume of the configuration space, or within an interaction region. Reaction or scattering



amplitudes can nevertheless be calculated accurately by using the wavefunction within an
appropriate transition matrix element. We pay particular attention to the way in which
the different models can be used to calculate elastic and inelastic scattering and breakup
observables. We will not discuss transfer or charge-exchange reactions significantly but it
is understood that, in these cases also, ¥(*) should be used in the appropriate transition
matrix elements [7, 8].

III. FOLDING MODEL

The folding model potential [9] between the projectile and target is the ground state expec-
tation value of the summed constituent interactions with the target,

Vio(R) = (66" [U({F; D)165”). (4)

It provides the no-channel coupling limit of all the models we will discuss and is therefore
often used as a reference from which to assess the importance of explicit breakup channel
coupling and, in the case of elastic scattering, the dynamic polarisation effects introduced
by such channels. Calculation of Vj is non-trivial for n>2 but can be carried out using
numerical quadratures for n = 3 or Monte-Carlo sampling for larger n.

IV. CONTINUUM DISCRETISATION

The now established technique in this category is the coupled discretised continuum channels
(CDCC) approach which has been formulated and applied extensively to the scattering
of n=2 projectiles, such as the deuteron (n+p), °Li (a+d) and "Li (a+t) nuclei. The
development of the approach and its relationship to Faddeev and other methods have been
comprehensively reviewed [7, 8]. The method will not however be extended readily to
systems with n>2.

By construction of a square integrable basis set gz;a(f’) of relative motion states in the two-
body separation ¥ = R, — EQ, on which to expand W) (7, ﬁ), the CDCC approximates the
three-body Schrodinger equation as an effective two-body coupled channels equation set.
The CDCC therefore works with the model space Hamiltonian

Qmaz

HOP =PHP,  P=Y [¢o)(dal (5)
a=0

In outlining the technique we neglect, for simplicity, the constituent and target intrinsic spins
and also target excitation. The projectile ground (excited) state total angular momentum
Jp(J;) is then just the relative orbital angular momentum of the two constituents £ (¢). We
assume also that p has a single bound state. The physical spectrum of H, is represented
schematically in part (a) of Figure 2, the continuum states ¢(7") extending over relative
momenta k and relative energy €. The breakup channels become closed asymptotically for

ex = PPk 20 > WPKG /24, — <0 (6)

where p and g, are the projectile internal and cm reduced masses.

4



max

AN

(1) (2)

@ (b)

FIG.2 Schematic representation of (a) the physical spectrum of projectile states, and (b) the
discretised continuum (CDCC) treatment of the continuum for different spin-parity ezcita-
tions.

A. Bin state construction

The CDCC treatment of the projectile internal excitations is shown schematically in part
(b) of Figure 2. Here we denote by (1), (2) ---, a physically significant set of spin-parity
relative motion excitations, e.g. J; =0, 1,2 in the case of a deuteron, which has .J, = £y = 0.
For each of these J; excitations the k continuum is divided (or binned) into a set of intervals
of width Ak; = [k; — k; 1]. The set of included J; states, the number of bins n(.J;) per
spin-parity state, and their upper limit k,,,, must necessarily be truncated in practical
calculations. Convergence of the calculations must then be tested for different sizes of
this model space. The number of bins, their boundaries k;, widths Ak; and k,,,, can of
course all depend on Jj. These parameters must be chosen to map any specific or resonant
features in the continuum. For low incident energies, k., may need to be chosen to include
asymptotically closed channels.

For each such bin, a representative normalised square integrable relative motion wavefunc-
tion

i (7) = Tug(r)/r] Y{" () (7)

can be constructed. Its radial function is a superposition of the scattering states ¢,(k) within

the bin with a weight function f;(k
; (k
~ V7N / o, JitR)Pelk,r) dk
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ki
Ne= [ [fk)PdE . (®)
For a non-resonant continuum, typically f;(k) = 1, in which case N; = Ak;. The choice
fi(k) = k is also useful in ¢ = 0 continuum states and provides a more stable description of
the s-wave threshold (k &~ 0) behavior. When treating isolated resonances [10], the choices
fi(k) = [iT/[2(e, — &;) +iT]|, or f;(k) = sindy(k), provide a more accurate description of the
resonance strength within a bin. We have chosen the ¢, to have normalisation

d)g(k‘, 7”) — [COS (Sg(k')Fg(k'?”) + sin (Sg(k')Gg(k?”)] R (9)
at large r, where Fy and Gy are the regular and irregular Coulomb functions and dy(k) is the

nuclear phase shift.

m

The qﬁm = ¢y, where a = (i,J;), thus play the role of discrete excited states and are

assigned energies £, = (¢o|H,|da). The associated asymptotic wavenumbers K, of the cm
motion of the projectile in these excited configurations are such that

RPKZ2/2p, + o = B°KJ /21, — 5o = E . (10)

B. Coupled equations solution

These bin states, together with the ground state, constitute a conventional A" + 1 state
(M=Xn(J})) coupled-channels problem for solution of the CDCC approximation to ¥+

V(7. R) = g7 +Z¢u* )X (R) |
N A —
= 2_ Pa(MXa(R), (11)
a=0
where v = 0 (€9 = —&y) refers to the projectile ground state. Explicitly
[Tr + Vaa(R) = Eal Xa — 3" Vas(R)xs(R), (12)
BFo

with F, = F — £,. The coupling interactions are

Vas (B) = (9alU({B;})165)- (13)

The evaluation of these couplings involves additional practical truncations of the CDCC
model space, namely of (i) the maximum order used in the multipole expansion of the
interactions U, and (i7) the maximum radius ry;, used in evaluating these matrix elements.
These must be chosen to be consistent with the included .J; channels and the bin widths
Ak; and interaction ranges, respectively.

Solution of these coupled equations is carried out by usual partial wave decomposition.
We expand the scattering wavefunction, for incident spin projection m, in total angular
momentum eigenstates

Ry= Y CL (KO, (7 R) (14)

aJMyL

Kom( )



where we define

wih, (FR) = S (LM J My |JM)i* YA (R)

x 95 (7) [Xa(R)/R]. (15)

The radial coupled equations for the x are solved subject to the asymptotic boundary con-
ditions

)A(i — Fr/ (KoR)doa + ﬁ{aHzr’ (KoR), (16)

where H;” = G, + iF};, is the outgoing waves Coulomb function. ’75:& = ’7A'LJP:L/J5(KQ) is
the partial wave T-matrix element for exciting bin a. The coefficients C' are obtained by
matching the entrance channel boundary condition, and are

47

CJMJ — 0
(K= 45

et O (LM Jym|JM,)YM(K,)*, (17)

where wy,(0) is the elastic channel Coulomb phase w; = o, — 0y. Combining results, the
(partial wave summed) amplitude for excitation of excited configuration «, in angular mo-
mentum sub-state m' is

Fom( T2 Ko) = ,/ S (L0J,m|Jm)
Ko LL'J

x ellwr (@Fwr 0 L'm m/ Jym/|.Jm)

X T (Ka) Y (o) YEI™ m(ff\a) ) (18)

and similarly for the nuclear part of the elastic amplitude. It is usual to calculate these
amplitudes in a coordinate system in which the z-axis is in the reaction plane of K, and
K,. The CDCC scheme is available in a general coupled channels computer code [11].

C. Two-body scattering and breakup observables

The calculational structure outlined here leads to simple expressions for two-body scattering
observables, such as the differential cross section angular distribution for elastic and inelastic
scattering, and the inelastic scattering of the cm of p excited to a given bin. For elastic
scattering, the diagonal point charge Coulomb amplitude must of course be added. The cm
cross section angular distribution, summed over all included breakup excitations, is

do 1 ~ ‘2

- 1
dQx  2J,+1 (19)

a#0,m'm

Similarly, from Eq.(18), one obtains the cross sections for each bin integrated over all direc-
tions of the emerging cm of the fragments, do(.J;)/dz;.



D. Three-body breakup observables

Less obvious is the relationship of the CDCC two-body inelastic amplitudes ﬁmm’(a) to
the breakup transition amplitudes Tm(E, K ) from an initial state .J,, m to a general physical
three-body final state of the constituents. This is needed to make predictions for experiments
with general detection geometries, since each laboratory detector configuration and detected
fragment energy involves a distinct final state cm wave vector K , breakup energy ¢, and
relative motion wave vector k.

Writing the CDCC approximation to the breakup transition amplitude by replacing ¥¢” in
an exact post-form matrix element, gives

Tk, K) = (o7 (7) X MU R DIYED, (7, R)) (20)
Inserting the set of bin-states, assumed complete for the model space used, then
Tk, K) = 3 (6|60 o, KU R DIWED ) . (21)

We now recognise that the matrix elements ﬁm/m(a), re-normalised to T-matrix normalisa-
tion by removal of the trivial two-body phase space factors, i.e.

~ 27T7L2 K() -~
Tm’m @) = — —-,Fm’m @) , 22
(0) = =2 [ Fare) )

are precisely the transition matrix elements

Tt (@) = (0, Kol UCE ITED ), (23)

Kom!?
obtained by coupled channels solution on a grid of 6, and K, values. In our spinless particle
case, one finds

(2 )3/2
kv/N,

’

(@) |om'y = (—0)" fa (k) eleOtoe®lym’ (- (24)

where k € Ak,, and so

(2m)3/2
k Im
X fa(k) Y™ (B) T, K) (25)

In this equation the Tmrm(a,l?) at the required final state vector K = [K,0,0] can be
obtained by interpolating the bracketed term on the right hand side of the expression

Tpym(at, K) < elm=m'lo {%mfm(a) /M] (26)

from the grid of calculated [K,,0,] values.

T (k, K) =

> (- i) exp(i[de(k) + o4(k)])

’

The breakup triple differential cross section in the case of measurements of the energy of
constituent 1, is
to _ _ 2mm Z Tk K| (27)
dE A0 dQy 12K, (27, +1 prz

where p1a = p(E1, 4, €s) is the density of states for the frame (cm or laboratory) of interest
[12].




E. Convergence considerations

The practical convergence of CDCC calculations of S-matrix elements and elastic scattering,
transfer and breakup observables has been studied carefully for short-ranged U [7]. Con-
vergence with respect to the included .J channels, the potential multipole expansion, and
kmaez 1s readily tested. However, since the radial extent of the intrinsic bin states ry;, is
proportional to 1/Ak;, a careful balance must be met between this maximum bin radius and
the bin widths Ak;, to ensure bin state normalisation, inclusion of the full bin strength and
an accurate representation of the coupling interactions Vs at large R.

The convergence of CDCC calculations for long ranged U, e.g. when including Coulomb
breakup, has yet to be established [4]. The long range of U couples states close in the k
continuum, requiring narrower bins, larger r;,, and hence larger coupled channels sets. A
problem has been the lack of an exact non-perturbative solution against which to assess
this convergence. An alternative approach to Coulomb breakup is discussed in Section VII
of these notes. This will be seen to yield a non-perturbative calculation of the Coulomb
breakup amplitude without model space truncations or discretisation, which may aid an
assessment of the CDCC convergence at higher energies.

V. ADIABATIC APPROXIMATION

A considerable simplification of the CDCC calculational scheme, permitting calculations for
n>2, is achieved by use of an adiabatic treatment of the reaction dynamics. As for all
adiabatic approximations, we must classify the dynamical variables into a high energy (fast)
and a low energy (slow) set. In the present context we identify the energetic variable with ﬁ,
the projectile cm motion, and the slow variable with its internal motions ;. At high incident
energy, to be quantified later, and for extended, weakly bound p, this division is very natural
[13]. It is assumed therefore that the energies ¢ associated with the most strongly coupled
excited configurations in Eq.(1), are such that ¢, < F; sometimes also referred as a sudden
approximation. Equivalently, due to the slow internal motions of the constituents of p, the
{7;} are assumed frozen for the time taken for p to traverse the interaction region. This
approximation is also the starting point for eikonal few-body approaches, based on impact
parameter descriptions, discussed later in these notes.

Assuming ¢, < E, little error is made upon replacing H, in Eq. (1) by a representative
(small) constant energy. Furthermore, taking this energy as the projectile binding energy
—¢p, the adiabatic Schrodinger equation is, with Ey = E + &y,

[Tr + U{EY) - B WP ({7}, B) =0 (28)

whose solutions satisfy the required incident plane wave boundary conditions of Eq.(3) since
their dominant elastic channel component has the correct channel energy. Clearly for n=2
Eq.(28) can be solved using the CDCC method, by calculating the coupled channels set,
Eq.(12), with all E, = Ey. Indeed this provides a valuable check of numerical calcula-
tions. More importantly, the adiabatic approximation has removed the explicit dynamical
dependence on the internal degrees of freedom of the projectile in Eq.(28), which is now an



effective two-body equation with only parametric dependence on the set {7;}. Its solution

V{7, B) = g ({7} B)eg” ({73 (29)
must be evaluated on a grid of required but fixed r; values.

Except for the few-body wave function at coincidence (7;=0), the solution of Eq.(28) is
obtained using coupled channels methods. At coincidence, however, UAP satisfies the one-
body equation

[T + U{R}) — Eo| U42(0,R) =0 . (30)

The simplicity of this coincidence solution, and its deviation from the folding model solution
due to Vgo, Eq.(4), has provided great insight into the role of breakup effects in zero-range
approximations to reaction amplitudes [8, 13].

In the general case, and for comparison with the CDCC methodology, we outline the struc-
ture of the adiabatic calculational scheme for ¥4” in the n=2 case. As for the CDCC
analysis, we neglect particle spins. The method, including spin considerations, has also
been applied for n=3 projectiles [14].

A. Adiabatic coupled equations solution

An accepted method of solution [15] is to make a truncated orbital angular momentum
expansion in the internal coordinate 7, and hence to solve for the effective Hamiltonian

Zmam

HAP = PH,P, P= > |[tm){tm], (31)

£=0,m

as a coupled channels problem. Here Hy = T+ U({R;}) is the adiabatic Hamiltonian. The
generalisation, for n=3, is to truncate the angular momentum expansions for both of the
internal coordinates [14].

The coupled equations can be set up by making the partial wave expansion of the scattering
wavefunction,

\IJA[??m 7 Z Cg%i] K07 ) JMJLZ(FaR) (32)
JMjLL

where we assume the projectile is incident in the ground state, with angular momentum
projection m, (and J, = )

0 (7) = 07 (7) = [ue (r) /1] Y (7). (33)

The total angular momentum states are now
Ui L R) =Y (LM | TM)iY Y (R)
LIM/[I !

x Yy"(7) Lo (r, R)/R), (34)
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and the radial distorted waves x”, for each fixed r, satisfy the coupled radial equations

[E TL’]XLKL’@’ r, R Z L =L

ZIILN
x ((LO)INUHRDIL"E")T) XLgpren (1, R) (35)
subject to the boundary conditions
Xtewe = Fr(KoR)oeedyr + Trppe (r)Hi (KoR). (36)

Here T7, is the kinetic energy operator in partial wave L and the partial wave 77 are now
explicitly 7 dependent. In the coupling interactions in Eq.(35),

(R, 7|(LOTMy) = Y (LMem| TMy) Y (R)Y"(7), (37)

Mm

and the bra-ket denotes integration over R and 7.

The coefficients C' are once again obtained by matching to the entrance channel boundary
condition. In this case
4

O (Ko, 1) = T 2 e“rO) (LM Um|.JM;)

X Y (o) uy (1) e, (38)

The truncations required in this solution are (i) the order of the potential multipole ex-
pansion, and (i7) the maximum relative orbital angular momentum included ¢,,,,. The
convergence of the model calculations with respect to these parameters is readily estab-
lished.

B. Elastic and inelastic scattering

It follows that the amplitude of the outgoing waves in UAP, in direction K , when the
projectile is incident with angular momentum projection m and a fized spatial configuration
7, is

. 4
FulP K) = —— 3 (LOLym]|Jm)e!“r O)r(O)

KOTLL%/ 'y
(L'm — m' 0w/ |Jm) Y2 (Ky) Y™ (K)

Tt ()Y (Pug (r) (39)

X

X

with |I€ | = Ky. The predictions for elastic or inelastic scattering can now be obtained by
direct overlap with the appropriate final state,
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where the integral is over 7. For inelastic scattering to a bound excited state with orbital
angular momentum ¢;, Eq.(33), then
4T

Fo (B) = 2257 (L0Cym|Jm)eilen 0+ 0]
( ) KULL,J( 0m| m)e

x (L'm — m'élm'|Jm)YL0(f(\o) Yﬁkm,(k\)
x /0 dr g, (P Thomse, (P () (41)

For elastic scattering, one must add the point Coulomb amplitude fgt(G) and of course
l; = {y. For ¢y = 0 we have

= 1 )
F(K) = gt(ﬁ) + 7 Z(2L + l)eZZwL(O)PL(cos 6)
0 1

) [ fuo(r) PT o (r) (12)

where 0 is the scattering angle.

C. Breakup reactions

Since the projectile ground state qﬁg") is a factor in the adiabatic wavefunction, Eq.(29), it
is clear that at large constituent particle separations, 7; — 0o, the solution will vanish in a
region which should contain contributions from some parts of the breakup flux. So, for large
r;, AP will certainly be inaccurate. This is a consequence of our assumption that the entire
spectrum of H,, is degenerate with the ground state. It follows that, to use W42 to calculate
a breakup amplitude (for n=2) we must limit it to certain regions of the six-dimensional

(7.R) space. For instance, breakup channel overlaps (d)](z_)|.7-"m(lz)>, analogous to Eq.(40),
would probe the adiabatic wavefunction in areas where 1t is known to be incorrect and so
we cannot extract the breakup amplitude directly from the asymptotics of the adiabatic
solution.

In applications [16] to breakup reactions, U4” has therefore been used in the post form
breakup transition matrix element

T (K, K) = (04 (7) X RIU({ B 1) |94 (7, R)) (43)

k Kom

discussed in connection with the CDCC method. This matrix element is a natural choice
given the (7,R) coordinate representation of WP, Calculation of this matrix element re-
quires the few-body wavefunction only in the interaction region of U and the contributions
from large r are de-emphasised in the calculation of the largest components of the breakup
reaction.

It is important to recall also that incorporating the adiabatic wavefunction, and evaluat-
ing such a breakup amplitude, constitutes an iteration beyond the lowest-order adiabatic
method. Formally, calculation of Eq.(43) is equivalent to extracting the required amplitudes
from the asymptotics of the solution of the inhomogeneous equation

B — Tp — Hy| Vg (7, R) = UUR DV (7. R), (44)
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in which W4P appears only in the source term. While the calculation of U4” neglects the
projectile excitation energy, the bra in the calculation of 7}, includes correctly the final state
wavefunctions, kinematics and excitation energies. The calculation does not therefore make
the zero adiabaticity parameter (¢ = 0) approximation of semi-classical theories [4]. We
return to this point in discussing the recoil approximation to the adiabatic calculation in
Section VII.

The adiabatic approximation can also be used to provide an approximate few-body wave-
function in reaction channels, such as involve the pp and d* (spin singlet np) two-body
systems, in which there is no bound state. Applications of this type include the (*He,pp)
[17] and (p,d*) [18] transfer reactions to these unbound continuum final states.

D. Convergence and accuracy

The adiabatic approximation assumes the states of H, excited are of low energy. Of course
the strengths with which the spectrum of breakup states of H, are actually excited in a
collision will be dictated by the magnitudes, and moreover the geometries, of the tidal forces
experienced by the projectile’s constituents. It is the radius and surface diffuseness of the V},
which dictate the strong differential forces exerted on the constituents at the nuclear surface.
For excitation due to the strong interaction, where the optical potentials V}; have surface
diffuseness parameters of order 1 fm, the excitation energy spectrum (calculated using the
CDCC) typically extends to 10’s of MeV. For a long range interaction with slow spatial
variation, the Vj; couple states of H, only in close proximity in relative energy. Since the
important surface diffuseness of nuclear optical potentials is essentially constant with nuclide
and incident energy, the adiabatic approximation becomes increasingly good at sufficiently
high energies.

This validity has been studied extensively for elastic and breakup reactions in deuteron,
6Li, and "Li induced reactions [7] and found to lead to good agreement with the CDCC
for projectile energies in excess of ~50 MeV /nucleon. For elastic and inelastic excitations
the relevant amplitudes, Eq.(40), sample the few-body wavefunction over the range of the
ground or excited state. These are principally sensitive to the low £, components in the
wavefunction, for which the adiabatic approach is well suited. For transfer reactions, how-
ever, the cross section angular distributions are almost always a delicate interference of the
contributions from transfers taking place on the near- and far-sides of the nucleus and, par-
ticularly with increasing energy and momentum mismatch in the reaction, are sensitive to
different parts of the excited spectrum in the few-body wavefunction [8, 19]. This results
in a far greater sensitivity to the higher ; components in the wavefunction [19] which are
less well represented in the adiabatic limit. Numerous non-adiabatic extensions have been
proposed [8, 20] to improve the description of these breakup components of high relative
momenta. One of the simplest of these, the quasi-adiabatic approach, is outlined very briefly
in the following Section. In general, in applications to transfer reactions, corrections to the
adiabatic theory need to be examined. The CDCC method is of course also applicable.
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VI. QUASI-ADIABATIC APPROXIMATION

Quasi-adiabatic methods remove the degeneracy of the elastic and continuum channels,
assumed in the adiabatic calculation of the n-body wavefunction, while at the same time
retaining much of the simplicity of the adiabatic theory [21]. They do so by introducing a
representative continuum energy & # —gq for the entire spectrum of breakup states of the
projectile, which may however depend on the cm position coordinate and partial wave L
[21, 22].

From the adiabatic wavefunction calculated using the coupled channels approach of this
Section, the elastic and breakup channels components of the solution can be separated by
projection,

AD.,el

ADU(R) — (o[ AP), (45)

and subtraction
MY R) = vl ({7}, B) — v (R). (46)

Decomposing similarly the original, non-adiabatic, Schrodinger equation
[T + U{E;}) + H, — E| % ({7}, R)
= [Bo = Ta —U{R;})| ¥, (R), (47)

the quasi-adiabatic approximation solves this inhomogeneous problem by replacing (i) H,—¢
on the left hand side, and (i) ¥ — WA in the evaluation of the source term. That is

[T + UR;}) +2— E| 2P ({7}, B)
= [UaP(B) - U{E; D] g (R) (48)

where UAt is the local equivalent potential to the adiabatic elastic component W47+ Simi-

lar expressions can be written down at the partial wave level. In applications, & can be taken
from the qualitative behaviour found from CDCC calculations [21] or, like the source term
in Eq.(48), can be estimated from the adiabatic solution. For example, as the expectation
value of H, in the breakup states [22]

i <\IJ4D,I7U|H |\114D,bu>
&(R) = ( ADbu|\IIADbu>

(49)

This value can also be used as a starting energy from which to iterate Eq.(48), subsequent
iterations using & computed instead from W@4P:¢  Applications of the quasi-adiabatic ap-
proach have clarified the importance of the high energy breakup components in transfer
processes, and also shown that the approach provides a better description of these high
energy components [8, 21, 22].

VII. RECOIL ADIABATIC APPROXIMATION

A very useful special case of the adiabatic model is obtained when the potential V. (R,),
between just one of the projectile constituents ¢ and the target, dominates in U({R;}). We
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refer to ¢ as the projectile core. So, R.=FR-— v.T, where 7 is the position of the cm of the
remaining n — 1 valence particles v relative to ¢, and 7. = 1 —m./m,. In this limit we show
that there is an exact closed form solution W4P of the adiabatic n + 1-body Schrédinger
equation [23] which satisfies

[T + Va(R.) — Eo] WP ({75}, B) =0 . (50)

It follows that excitation of the projectile or removal of the valence particles v is by virtue
only of the interaction and recoil of the core, also referred to as a ‘shake-off” mechanism.
Applications of this limit include the scattering of halo nuclei [24] such as ''Be, described
as a heavy core nucleus °Be bound to a single valence neutron by only 0.5 MeV. Here the
10Be core-target potential is much stronger, and of longer range, than the neutron-target
potential, i.e. V; > V,;. The scattering of a composite projectile from a highly charged
target, when only the projectile core is charged, is another very important case [25] discussed
in the following.

As well as providing physical insight, the recoil limit is valuable for providing a detailed
test of the computational and numerical coupled channels methods, since coupled channels
solution, orbital angular momentum truncation, and multipole expansion and truncation
are unnecessary in this case.

A. Recoil limit solution

To solve the recoil limit Schrédinger equation, Eq.(50), we introduce the translation operator
U(Z), which shifts the cm variable R through —Z, i.e. U(Z) = exp(—i - V). Since the
potential operator V. is . .

Vct(Rc) = U(/Yc"?)vct(R)UT(fYcF) ) (51)

and [U(v.7), V%] = 0, then
Tr + Va(R) = Bo| (UM (ve?) 922 ({75}, B)) =0 . (52)

Evidently, the most general form of the solution UTW of this equation is the product of an
arbitrary function F(7) of the separation of ¢ and v, the projectile ground state d)(()n) and a
projectile cm distorted wave X(+)(R),Which satisfies the one-body Schrodinger equation

[T + Va(B) — B X\ (F) =0 . (53)
In the present context therefore x(*) is the distorted wave which describes the scattering of

the projectile, considered point-like, by the core interaction V,;. The required many-body
solution of Eq.(50) is therefore

VPR R) = F(7) [UGn)xG) (B)] 66" (7))
= FXT (Bt (7)) (54)
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where y(*) is evaluated at the core’s position coordinate ﬁc. We note that, since
[U(v.7), Hy] # 0, this product solution follows from Eq.(1), with U = V,,, only if H, is
treated adiabatically.

The multiplicative function F, chosen to satisfy the incident wave boundary condition,
Eq.(3), is

F (i) = exp(iveKo - ), (55)

and the ezact solution of the adiabatic problem, Eq.(50), is

TAP ({7}, R) = exp(ineKo - 'Y (R)ol" ({7}) (56)
It is important to stress that this wavefunction retains break-up components and excitations
to any bound excited states. These couplings are manifest in the complex dependence of
the wavefunction on 7 through both x(*) and the exponential factor.
The asymptotic form of the wavefunction for large R in direction K , and finite r;, is
iKR
R )
with |K| = |Ky|. Here § = Ky — K is the momentum transfer in the reaction, and f,,(K,, K)
the point projectile elastic scattering amplitude associated with x(+).

TAP ({73}, B) — o8 ({71 e foy (B, K) (57)

B. Elastic and inelastic scattering

Elastic and inelastic scattering in the recoil adiabatic limit is, replacing W) by W42 in the
transition amplitude

T(Ka) = (60 (7)) e X PV v (7, R) (58)

given by the factorisation

T(Ka) = (8167 7765") (Kal Vil X))
= FaO(fYc@ Tpt(ﬁﬂaka)- (59)

If, in keeping with the adiabatic approximation, we assume |I€a| = |I?0|, this result can also
be obtained from the asymptotic form, Eq.(57). Then T}, is the elastic scattering transition
amplitude describing the scattering of p, assumed point-like, by V,;. The formfactor F,g
accounts fully for the effects of projectile structure and excitation. If in Eq.(58) we take
|K,| # |Ko| then T, must be calculated half-off the energy shell. This poses a problem in

situations where the Coulomb interaction plays a significant role due to the singular nature
of the half-off-shell Coulomb T-matrix.

The corresponding scattering differential cross sections are

(j—g) — | Faolred)? (j—é) . (60)
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Clearly T); can be highly constrained if experimental data on the elastic scattering of the
core from the target is available to determine V,;. The importance of Eq.(60) is that it
then identifies those scattering angles and incident energies at which the structure of a
loosely-bound projectile, with a given wavefunction, will be manifest as a deviation from
the scattering expected if it were a point projectile [23].

While the formfactor in Eq.(60) is also reminiscent of factorisations which occur when using
Born approximation and approximate distorted wave theories, the analysis which led to this
result does not involve such approximations. In fact, only when all intermediate states are
included do the second- and higher-order terms in the Born series for the amplitude factorise
in this way. The same argument pertains for the factorisation of the wavefunction in Eq.(56).

C. Breakup reactions

Eq.(56) is the exact solution of our stated few-body model, given only the adiabatic as-
sumption. The explicit form again makes clear that, for large r, ¥ will be inaccurate. The
appropriate breakup matrix element must be chosen accordingly. As for the elastic and
inelastic channels, we can write

T(k, K) = (o (7) e V(R WD (7, R)) (61)
and achieve a similar factorisation
T(k, K) = Feo(7eq) Tpu( Ko, K), (62)

where now F (7.q) = (¢](;_)|ei7cq'F|¢0>. While this amplitude may be reasonable for a short
ranged V;, when V,; is of long range the integrand in Eq.(61) is not restricted to small r.
The problem with the half-off-shell T}, for the Coulomb interaction also remains with this
matrix element.

Since however the distorted wave appearing in Eq.(56) for ¥4? is now a function of R,, then
an alternative breakup transition amplitude is (with n=2 for simplicity)

T(K,, Ke) = (5 SO () [Vie O30 (7, B)) (63)
This is the breakup amplitude to a c+uv final state with core momentum kK, = (1 —fycfytc)ﬁ —
Yk and valence particle momentum K, = v.K + k in the cm frame, where v, = m;/(m. +
my). x(7) is the final state wavefunction of the core, distorted by V.. Since V,, = 0, the
valence particle’s final state is a plane wave. Due to the short range of V,. = V,.({7}),

the sum of all interactions internal to H,, the integrand in Eq. (63) involves only finite 7;
irrespective of the range of V.

As in our discussion of Eq.(44), evaluation of T is equivalent to solving the inhomogeneous
problem

[E =T, =T, = Vy] U (7, R) = Vie (AU R° (7, R) (64)
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where T, and T, are the valence and core particle kinetic operators. It goes beyond the
lowest order adiabatic approximation since it includes correctly the final state wavefunctions,
kinematics and excitation energies.

Substituting Eq.(56) in T, and noting that Ev = fytcﬁc + 7, the breakup amplitude is once
again seen to factorise eractly as

T(K,, Ke) = (Py[Vielgo) (@ x G N (65)

where we have introduced momenta f’;, = I?U — %120 and @U = fytcl?U. The two factors
delineate the structure and dynamical parts of the calculation.

The projectile structure enters through the first term, the vertex function (P,|Vie|¢o) which
can be evaluated given a structure model for the projectile. This matrix element reflects the
fact that, in the recoil (V,; = 0) limit, momentum can be transferred to the valence particle
only by virtue of its interaction V. with the core. Since %I?O is the fraction of the projectile
momentum carried by the incident valence particle, ]3@ is the momentum transfer to the
valence particle. The vertex displays explicitly this momentum transfer from the ground
state via V.

The second term contains all the dynamics of the breakup process. In general this overlap
of the three continuum functions <Q”’X(1?_)|X(1;;)> is difficult to evaluate, though it can be

handled using the Vincent-Fortune integration procedure [26]. It can however be evaluated
in closed form, and expressed in terms of the bremsstrahlung integral [27], when V; is
the Coulomb interaction and the distorted waves are three-dimensional Coulomb waves.
This limit has been applied to study the Coulomb breakup of both n=2 [25] and n=3 [28§]
projectiles.

Eq.(65) is also significant since it treats exactly the finite-range nature of the interaction V.,
unlike zero-range and local energy approximations [2]. The amplitude is therefore applicable
to projectiles with any ground state orbital angular momentum structure, and also includes
breakup contributions from all interaction multipoles and relative orbital angular momenta
between the valence and core fragments. The amplitude goes significantly beyond DWBA
theories since it includes the initial and final state interactions V,; and V,. to all orders.

In conclusion, the recoil adiabatic limit provides a closed form solution of the few-body
problem which becomes more accurate with increasing incident energy. It thus provides a
valuable check of truncated calculational schemes, such as those discussed in Sections IV
and V, and also of the (more approximate) impact parameter approaches of the subsequent
Sections.

VIII. EIKONAL POINT-PARTICLE SCATTERING

In practice, the approaches discussed so far have been restricted to projectiles modeled as
two- or three-body systems. Indeed, only the adiabatic and recoil adiabatic models have
been used with a three-body projectile [14, 28]. A more efficient approach for dealing with
an n-body projectile, the few-body Glauber (FBG) model, is based on the eikonal approx-
imation. Provided that certain conditions hold, the FBG approach can also be the most
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efficient method for dealing with three- and four-body systems, even when other approaches
are applicable. We first introduce the ideas behind the eikonal and more general impact
parameter descriptions using the scattering of a point projectile from a target. We then
extend the approach to treat the scattering of composite systems.

A. The eikonal approximation

The eikonal approximation was introduced in quantum scattering theory by Moliere and
later developed by Glauber. It was Glauber who applied it to nuclear scattering where he
formulated a many-body, multiple scattering generalisation of the method [29]. We first
describe the eikonal approximation as applied to non-relativistic point particle scattering
from a central potential V,,(R).

In common with other semi-classical approaches, the eikonal method is useful when the
wavelength of the incident particle is short compared with the distance over which the
potential varies appreciably. This short wavelength condition is expressed in terms of the
incident centre of mass wave number, Kj, and the range of the interaction, Ry, such that

KoRy > 1. (66)

However, unlike short wavelength methods such as the WKB approximation, the eikonal
approximation also requires high scattering energies, such that

E> Vol (67)

where Vj is a measure of the strength of the potential. In practice, and when V), is complex,
this high energy condition is not critical and the eikonal approximation works well even when
E =~ |Vj| provided the first condition, Eq.(66), holds and we restrict ourselves to forward
angle scattering.

Since the potential varies slowly on the length scale of the incident wavelength, it is reason-
able to extract the free incident plane wave from the scattering wave function as a factor,
ie.

—

vig) (R) = e R u(R) (68)
where w(é) is a, as yet unspecified, modulating function. The eikonal approximation to (*)
can be derived starting from either the Schrodinger equation or the Lippmann-Schwinger
equation. Here we follow the first approach. The scattering wave function of Eq.(68) is
substituted in the Schrodinger equation

2 o
Levy] o () =0, (69

where 1, is the reduced mass. Using the eikonal conditions, of Eqs.(66) and (67) and with

V3 + K2~

the coordinate z-axis along the incident wave vector }?0, Eq.(69) reduces to the first order
equation for w

8_w _ Uy
0z N h2K0
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The solution of this equation, with the incident wave boundary condition requirement that
w(z— —o0)=1,1is

w(ﬁ) = exp {_E,ZQLIZO /_;V;)t(x, Y, z')dz'} , (71)

and yields the eikonal approximation to the wave function

SR = i R [t ™

where v = hK,/p, is the classical incident velocity in the cm frame. Thus, the modulating
function introduces a modification to the phase of the incident plane wave. This modification
involves an integration along the direction of the incident beam and, as such, assumes that
the effects of V},; are accurately accounted for by assuming the projectile traverses a straight
line path. The eikonal method is therefore more accurate at forward scattering angles.

projectile

target

FIG.3 The straight line trajectory assumption of the eikonal approximation.

The eikonal wavefunction has incorrect asymptotics and so, to calculate amplitudes and
observables, must be used within a transition amplitude. Thus, starting from the exact
elastic transition amplitude

T(Ko, K) = (K| Vi [93) | (73)

the eikonal approximation to the elastic scattering amplitude is

fo(K) =

st [afé TR Viy(R)w(R) (74)

where ¢ = Ky — K is the momentum transfer. We shall use a subscript zero throughout to
denote quantities calculated in the eikonal limit. Since |K| = |K,|, then for small forward

angles, ¢ is almost perpendicular to K. In cylindrical polar coordinates,

—

R=b+Kyz=b+7, (75)
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where b is the impact parameter, Figure 3, which lies in the x—y plane. Thus we have
G R=q-b+q-Z~q-b. (76)
In addition, the product Vjw is known from Eq.(70) and when substituted in Eq.(74) gives

- K 00
PRy = B[ e, 2
ZKU

_ igb [ iXo(b)
= - db e'T ( 0 1), (77)
where the eikonal phase shift function, Xy(b), is
1 00
X(b) = =3 [ VulR) dz . (78)

Since we are assuming a central potential, f, will also possess azimuthal (cylindrical) sym-
metry. The azimuthal angle integration in Eq.(77) can therefore be carried out giving the
more familiar form

fol0) = =it [ “bab Jo(gh) [So(b) — 1] (79)

where ¢ = 2K,sin(6/2), 0 is the scattering angle, and Sy(b) = exp [iX(b)] is the eikonal
elastic S-matrix element at impact parameter b.

One can obtain the same expression for the elastic scattering amplitude by choosing the
z-axis to be along the bisector of the incoming and outgoing momenta, Ky and K. With
this choice, we have ¢ - R= q- b exactly and so there are no small angle restrictions in the
amplitude. However, it should be remembered that the z-direction was originally chosen to
be along K, in the wave function which enters the derivation of the amplitude in Eq.(73)

B. Coulomb interactions

In deriving X;(b) above, it was implicit that V,,(R) was such that Eq.(78) converges. This
is certainly the case for a short range strong nuclear interaction. When V), includes a
Coulomb interaction then we obtain a sum of phase shifts Xy = Xyny + Apc of nuclear and
Coulomb terms. Due however to the 1/R behaviour of Vi the Coulomb phase integral
diverges logarithmically and a screening radius, a, must be introduced to shield the charge
at large distances. This screening affects the scattered intensity only at scattering angles
Oc < (Koa) !, Since a is typically of atomic dimensions, for the incident energies of interest
the angle 6 is much smaller than any at which measurements are made. For angles 6 > 0
we observe particles whose impact parameters b < a and the Coulomb phase shift can be
written [29] as a sum of terms, Xy = Ay, + &,. The first term depends on the form of
the assumed Coulomb interaction and X, = —2nIn(Kpa) is a constant screening phase in
which 7 is the Sommerfeld parameter. Thus the eikonal scattering amplitude for a screened
Coulomb potential is

fol6) = eiX“{ 2(0) — iK, Ooobdb To(gh) €[S, — 1]} (80)
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where fgt is the Coulomb amplitude for point charge (Rutherford) scattering. The point
Coulomb phase shift appearing in the eikonal term is A};(b) = 2nIn(Kob). The Coulomb
modified eikonal S-matrix Sy(b) characterises the deviations from point Coulomb scattering
and is

So(b) = exp [ZXON + X, — Xpt] (81)
The screening affects the scattering amplitude only as an overall (constant) real phase A,
and has no consequence for calculated observables.

IX. NON-EIKONAL EXTENSIONS

In the previous Section an approximate form for the elastic scattering amplitude was derived
within the eikonal model. However, the eikonal approximation is not necessary to write
the scattering amplitude as an impact parameter integral. Consider the exact scattering
amplitude, written as a partial wave sum,

i 20 + 1) Py(cos0) [S, — 1] , (82)

QZKO 1—0

where Py(cosf) is a Legendre polynomial. S, = exp(2idy) is the exact partial wave S-matrix
element obtained by solution of the radial Schrodinger equation for a given orbital angular
momentum ¢ in the presence of the assumed V},;(R). The amplitude F' can, alternatively, be
written as a continuous integral, a Fourier-Bessel expansion,

F(0) = —iK, / " bdb Jo(gh) a(Ko,b) | (83)
0
where the amplitude a(Ky, b) is [30]

1 00
CL(K(), = K— Z 26 + 1 J25+1(2K0b) [Sg — 1] (84)
=0

Eqs.(83) and (84) are exact and valid for all energies and angles. On a purely mathematical
note, it has been pointed out by several authors that the relation between F' and a is not
one-to-one due to a lack of uniqueness in a. A detailed discussion of this can be found
elsewhere. [30]

At high energies, we can make the (semi-classical) correspondence between the orbital an-
gular momentum and impact parameter, 2¢ + 1 ~ 2Kyb, and, in this limit,

a(Kop,b) ~8&—1. (85)

This association amounts to making the small wavelength approximation discussed earlier
and the scattering amplitude becomes

£10) = =ik | b Jo(qb) [S(b) — 1] . (86)
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Now S(b) = exp[iX(b)] is the continuation of S; to real non-integer angular momenta and
coincides with the physical S-matrix whenever Kb — 1/2 has integer value. S(b) will be
referred to as the exact continued (EC) S-matrix. It is important that Eq.(86) does not
require, and has not made, the eikonal approximation to the scattering phase shift. The EC
phase approach can be viewed as replacing the eikonal phase Xp(b) in Sp(b) = exp[iXy(b)]
by an improved description using the physical phase shifts, since

xX(b) =26, 20+1=Kpb. (87)

The scattering amplitude of Eq.(86) goes beyond the eikonal approximation of Eq.(79). We
have adopted the notation of a lower case f for this amplitude to distinguish it from the
exact amplitude F'.

The formalism generalises to include the Coulomb interaction where the exact partial wave
amplitude is now

F(0) = iki 20 + 1) Py(cos 0) e*¢ [S, — 1] (88)

where o, is the Coulomb phase shift. The S, here, obtained by matching to Coulomb
functions the solution of the radial Schrodinger equation in the presence of both nuclear and
Coulomb interactions, characterise only the deviations from point Coulomb scattering. The
EC equivalent of Sy, S(b), is then used in place of the Coulomb modified eikonal S-matrix,
So(b), in Eq.(80).

A. The Fourier-Bessel expansion

These connections between the partial wave sum and the impact parameter integral rep-
resentations of the scattering amplitude have also been discussed by Glauber and Franco
[31] and Wallace [32]. They showed that a formal connection between F and f can be
made using an expansion of the Fourier-Bessel representation, Eq.(84), appropriate to high
energies. They clarify that, in writing Eq.(79), in addition to the discrete to continuous
variable transformation, only the leading term in the small angle expansion of the Legendre
function has been retained. This is the origin of the zeroth order Bessel function Jy(gb). In
the complete formal derivation of Wallace [32] an additional operator W (b) multiplies S(b)
such that

(Ko, b) = W(H)S(b) — 1 . (89)

It is well documented that the eikonal model works rather well down to lower energies and
to larger angles than might be expected. One reason for this is that there is considerable
cancellation between the higher order correction terms in the expansion of W about unity,
arising from the discrete to continuous variable transformation on the one hand and the
small angle approximation on the other. Setting W (b) = 1 is therefore a remarkably good
approximation.
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B. Corrections to the eikonal phase shift

Wallace used the correspondence between the eikonal phase and the expansion of the WKB
phase shift as a means of improving the eikonal amplitude. The WKB phase is expressible
[32] as an expansion in powers of a parameter € = 1/AKjv,

ARG = 3 ) (90)
0 = [ () R (o1

with the eikonal phase shift as its n = 0 term. The X5 are themselves not exact and
additional corrections arise [32]. These corrections are also expressible as an expansion in
powers of €. Replacing the eikonal phase shift X of Eq.(78) by these expansions leads to an
improved phase function.

When the Coulomb interaction is included screening need only be applied in the lowest
order (eikonal) term. In higher order terms, Vi appears in quadratic or higher powers of
(Vi + V). These terms make only finite range modifications to the integrals over z.

The effects of corrections up to third order have been studied and are important for the
scattering of nucleons [33]. The effects become more important as the scattering energy
is reduced, however, the expansion itself becomes unstable at energies below 25 MeV. For
heavier projectiles K is larger and these higher order terms are less important.

X. EIKONAL FEW-BODY MODELS

The extension of the eikonal approximation to few-body problems, the Glauber multiple
scattering diffraction theory [29], was proposed to treat high energy hadron-nucleus colli-
sions. In addition to the eikonal assumption, Glauber’s model requires that the internal
motion of the constituents is slow relative to their centre of mass motion, the adiabatic
approximation discussed in Section V.

A. Glauber’s few-body model

Here, we are interested in the inverse kinematics picture to the one discussed originally by
Glauber in that the projectile is the composite system. The derivation of the cm scattering
amplitude is, however, the same in both cases. Our starting point is the adiabatic few-body
Schrodinger equation, Eq.(28). We next make an eikonal factorisation of the adiabatic wave
function of Eq.(29) of the form

VE7Y, R) = R R u({7), B) 6§ ({7)). (92)
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Substituting this wave function into Eq.(28) and following the same arguments as in the
point particle case of Section VIII, a first order differential equation for w is obtained

Ow iy

0z WK,

U{E N w{7),R) . (93)

Hence,
ok B) = e { - [ U({R =)
= exp {—h— > [Ty (Vi + ) dz;-} , (94)

where b; is the impact parameter for constituent j, Figure 4.

The few-body Glauber (FBG) scattering amplitude, for a collision that takes the projectile

from an initial state gbgn) to a final state ¢, can be derived following the same steps as in
the point particle case. The post form transition amplitude is now

T(Ka) = (o0 = F|U({F)})|wih), (95)
and, in keeping with the adiabatic approximation, if |I?a| = |I?0|, the FBG scattering
amplitude is

(R = ZKO/dbe’qb/ dz (6] Uw |60, (96)
Using Eq.(93), we obtain
AR = =20 [ 0|88 (5,) — 1168, (97)

where

7 ({;}) = exp [ ZXU] ] = ﬁlSo]‘(bj)- (98)

Thus the total phase shift is the sum of the phase shifts for the scattering of each of the
projectile’s constituents. This property of phase shift additivity is a direct consequence of
the linear dependence of eikonal phases on interaction potentials.

A crucial point to make here is that this few-body model applies only when the momentum
transfer between the projectile and target is small relative to the incident centre of mass
momentum, since we have continued to assume that ¢ - B~ q- b. This is certainly a good
approximation for elastic and mildly inelastic collisions.
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projectile

FIG.J The full projectile S-matriz is obtained from the individual S-matrices of its con-
stituent clusters, each evaluated at its own impact parameter.

B. Multiple scattering interpretation

The few-body Glauber model can be interpreted as a multiple scattering series by defin-
ing the profile functions I';, which are proportional to the transition amplitudes for j + ¢
scattering,

T;(b;) = 1 — So;(by) - (99)
Thus

n

S ({b;}) = 1_11 (1-T;)
=1 =3 T+ T+ ()" LT - (100)

J#k J

Substituted into Eq.(97) for the FBG amplitude we see that the terms linear in I'; account
for the single scattering (impulse approximation) contributions to the amplitude due each of
the constituents in the projectile. Subsequent terms provide double, triple, etc. scattering
corrections. Note that the order of the multiple scattering can be at most n since, due to
the forward (small angle) scattering assumption of the eikonal model, once the target and
a particular constituent of the projectile have interacted, they will not meet again. This
would involve back scattering.

C. Coulomb interactions

When one or more of the clusters is charged we follow the same Coulomb screening arguments
used above. Now, for each charged cluster j, X5 (b;) = AG,(b;) + A&7. Since the screening
phases X7 = —2n;In(2Ka) depend linearly on the Sommerfeld parameter of each cluster 7,
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andn = 37;n;, these phases add to give the screening phase appropriate to the projectile Aj,.
The few-body eikonal amplitude in the presence of nuclear and Coulomb forces, analogous
to fo of Eq.(80), is therefore (omitting the overall screening phase)

17(0) = fu(®) -
Ko bab Jo(ab) e (6”155 — 1165”), (101)

where

5" ({8;}) = exp { il X (by) + X5, (b)) — i?fpt(b)} : (102)

D. The recoil limit solution revisited

The few-body Glauber approach provides further insight into the recoil limit solution dis-
cussed in Section VII. It was shown there that in the limit when just one of the projectile
clusters c¢ interacts with the target, the few-body adiabatic scattering amplitude can be
factorized into an amplitude describing the scattering of a point-like particle with the mass
of the projectile, interacting via V,;, and the appropriate form factor F,, that describes the
projectile’s internal structure. In the Glauber framework, the eikonal phase shifts depend
only on the incident velocities of the clusters, which are of course the same as that of the
whole projectile. Hence, the S-matrices for the clusters are independent of their mass, and
the point-like amplitude in the recoil limit approximation is the amplitude for the indepen-
dent scattering of cluster ¢, evaluated at a different momentum transfer. In fact, the cm
momentum of the projectile enters the amplitude expression in two places: as a multiplying
factor outside the b integral and in the argument of the Bessel function. Thus the cross
section in the recoil limit, defined in Eq.(60), is, in the Glauber framework

() = iratiap 2 () (103

where the point cross section of Eq.(60) has been replaced by the physical cross section for
the scattering of cluster ¢, evaluated at a different momentum transfer. The factor, f,, is

. KO . mp (mc—l-mt)

K. m, \my+my

(104)

where K, is the cm momentum of cluster c.

Eq.(103) is useful if the differential cross sections for both ¢+t and p+t scattering at the
same laboratory energy are known, since it can give information about the structure of the
projectile through the form factor F,, provided of course that the recoil approximation is
valid. Examples of such systems, as discussed in Section VII, are single neutron halo nuclei,
such as 'C, which can be treated as a two-cluster (**C+n) system in which the ®*C+target
interaction should dominate the C scattering process.
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E. Non-eikonal corrections

The additivity of phases property of the Glauber approach suggests that improvements can
be made by replacing each eikonal phase shift function with a more accurate one. Such non-
eikonal modifications to the phase shifts of each cluster can be introduced as was discussed
for the case of point scattering earlier. Indeed, recent studies have shown that including
corrections up to third order in €; (oc K;?, where Kj is the cluster-target cm wave number)
improves the accuracy of the few-body calculations to lower energies and larger scattering
angles. For the scattering of two- and three-body projectiles, such as the deuteron and the
halo nuclei, ''Be and ''Li, comparisons have been made with the more accurate adiabatic
model calculations.

However, rather than develop and sum the expansion for the phase shifts in powers of €, a
much more efficient approach is to solve directly the radial Schrodinger equation for each
cluster-target two-body system at the required impact parameters and hence non-integer
orbital angular momenta \; = b; K; —1/2. No eikonal assumptions need therefore be made,
however the model would still retain the adiabatic and additivity of phases approximations.
This is done by replacing each eikonal phase shift Sy;(b) by its EC equivalent, S;(b), defined
in Section IX.

To generalise the formalism to include the Coulomb interaction, the EC equivalent, S;(b;),
of the charged cluster S-matrix, in the presence of both Coulomb and nuclear interactions,
replaces the corresponding eikonal one Sp;(b;).

A subtlety of this approach is that, since each charged cluster S-matrix contains deviations
from point Coulomb scattering at its own impact parameter, b;, the point Coulomb phase
shift must be incorporated within the cm b integral. Thus

n

8™ =TI S;(b;) exp | i (bi) — iXu ()| - (105)
j=1 k=1

XI. REACTION OBSERVABLES

Few-body impact parameter methods provide a convenient framework for calculating prob-
abilities and cross sections for a variety of processes involving peripheral collisions between
composite projectiles and stable targets. As has been emphasised throughout these notes,
projectiles composed of a few loosely-bound clusters require non-perturbative methods due
to the importance of higher order intermediate state couplings. Impact parameter methods
in general have a long history of being applied to reactions of loosely-bound nuclei that pre-
dates the work of Glauber. In particular, stripping processes, such as in deuteron-induced
reactions, have been studied using approaches developed by Serber [34]. Variants of such
methods are still in use today due to the simple geometric properties of the reaction processes
at high energies.

In the few-body Glauber model, the differential cross section for the scattering process
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defined by Eq.(97) is
(Sa) =GP (106)
and the total cross section for populating the final state « is thus
ou = [ |fOE)P
= [ dB1(618™166”) = duol? (107)
It should again be noted however that such an expression is only valid at high beam energies

and low excitation energies since energy conservation is not respected in this model. When
a = 0, the total elastic cross section is

o = [[dB |1 — (6|56 (108)

The total cross section is also obtained from the elastic scattering amplitude, employing the
optical theorem, to give

o1 =2 [ dB[1 = Re (65”1 [9{")] . (109)

Hence, the total reaction cross section, defined as the difference between these total and
elastic cross sections, is

on = [ db[1~ (61516 (110)

For projectiles with just one bound state, any excitation due to interaction with the target
will be into the continuum. For such nuclei, which include the deuteron and many of the
neutron halo nuclei (such as °He and ' Li), it is possible to describe elastic breakup channels
in which the target as well as each cluster in the projectile remain in their ground states.
For snnphClty of notation, we assume a two-body projectile with continuum wave function
¢z, where k is the relative momentum between the two clusters, and & = S®@(by,by) =
81(b1)82(b2) is understood. Elastic breakup, also referred to as d1ffract1ve dissociation, has
amplitudes

F(R,0) = =iy [ BT (or|S]ov). (111)

Making use of the completeness relation (when there is only one bound state)

[ A 1650 =1~ 60} (60 (112)

the total elastic breakup cross section is

o = [ d5 (0] 1SP160) — [{olSIé0) 7] - (113)
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The difference between the reaction and elastic breakup cross section is the absorption cross
section,

ouss = [ d5[1 = (60] 15 I60)] - (114)

which represents the cross section for excitation of either the target or one or both of the
projectile clusters.

The above formula can be understood by examining the physical meaning of |S|* (=
|511%|S2/%). The square modulus of each cluster S-matrix element, |S;|? represents the prob-

ability that it survives intact following interaction with the target at impact parameter gj.
That is, at most, it is elastically scattered. At large impact parameters |S;|> — 1 since the
constituent passes too far from the target. The quantity 1—|S;|? is therefore the probability
that cluster j interacts with the target and is absorbed from the system. Such a simple
picture is useful when studying stripping reactions in which one or more of the projectile’s
clusters are removed by the target while the rest of the projectile survives. Thus, the cross
section for stripping cluster 1 from the projectile, with cluster 2 surviving, is given by

Our = [ db (6ol|SP[1 — 151l (115)

This cross section is seen to vanish if the interaction Vj; of constituent 1 with the target is
non-absorptive, and hence |S;| = 1.

XII. HIGH ENERGY EIKONAL LIMIT

This Section demonstrates, using the high energy limit and a simple two-body structure
model, that the few-body structure of a nucleus has significant implications for the calcula-
tion and interpretation of cross sections. These are important considerations when measured
cross sections are used to deduce nuclear properties, such as their root mean squared (rms)
matter radii.

Theoretically, the situation is simpler at high energy because the interaction between each
projectile constituent and the target becomes essentially absorptive. The constituent-target
S-matrix elements Sp;(b;) can also be calculated reliably using the optical limit of Glauber
theory [35] in which correlations, internal to each j and to ¢, are neglected. The Sy; are
then calculated, in eikonal approximation, from the first-order multiple scattering (¢pp)
approximation to Vj, using the one-body densities p; and p, of j and the target and an
effective nucleon-nucleon (NN) amplitude fyy. For a single nucleon, then p;(z) = §(Z).

Explicitly, the Sp; in the optical limit (OL) are

S(%L(b) = 0% — exp {2 /_o:o dz (’)jt(R)] , (116)
where Oj, is the double-folding integral

O(R) = [di; [de ps(5) pulwn) frun (i), (117)
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with rj = |]§ + Z; — #;|. Assuming a purely absorptive and zero-range NN amplitude then
it is usual [35] to associate

Fan(F) = W;VN 5(F) (118)

where oy is the isospin average of the free NN total cross sections. This is sometimes
modified to account (partially) for the effects of scattering in the nuclear medium.

While, in the S(%L, we have neglected correlations internal to each constituent and the target,
we can choose to retain or neglect the few-body correlations between the constituents j of
the projectile. Retaining these, the projectile few-body elastic S-matrix, constructed from
the S5}, Eq.(98), is

5,7 (0) = (05| TL 85" () [64")- (119)

If, on the other hand, we also neglect these few-body correlations then the projectile optical
limit S-matrix, SpOL(b) must be calculated from Eq.(116), where the overlap Oy, is calculated
from the projectile one-body density p, according to Eq.(117). This is equivalent [36] to
retaining only the first term in the cumulant expansion of the projectile phase shift function

Xo({b;}) = % X0 (b;)-

It is also instructive to note that, when each Sp; is described using the optical limit, Eq.(116),
then the projectile OL S-matrix, SpOL, is equivalent to approximating Eq.(119) by its no-
breakup or folding model potential eikonal S-matrix, Eq.(4), i.e.

SOH(b) = exp [i(65" 1% ({b;})]66”)] = expli, (b)). (120)
This is to be contrasted with the correlated few-body expression,
SyP(b) = (84" explixo({b;})]45"). (121)

The effects of an explicit treatment of projectile breakup channels can therefore be examined
using Eqgs.(121) and (120). These equations clarify that the assumption of uncorrelated
particle motions, which underlies the optical limit of the eikonal theory, is inconsistent with
a realistic treatment of the continuum excitations of weakly bound few-body nuclei.

To evaluate Sf B and Spo L using realistic theoretical inputs is a reasonably involved numerical
task. We therefore use a simple two-body model, involving Gaussian densities, to expose
the consequences of the two calculations. For this analysis the zero range tyy is adequate
to clarify these differences.

A. Binary cluster model

We consider a two-body projectile with mass m,, consisting of valence and core clusters of
masses m,, and m, bound in a state of relative motion, Figure 5. For simplicity the internal
densities of the clusters are described by single Gaussian functions with ranges «, and o,
ie.

pe(r) = meg® (o, 1) (122)
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and similarly for p,. Here ¢® is the normalised three-dimensional Gaussian function

9 (v, 1) = (VIy) P exp(—r? /), (123)

which has mean squared radius (r?) = 3+%/2. If we also assume that the relative motion

wavefunction qﬁgz)(f) of the two clusters is a Os oscillator state of range parameter o then of
course

667 ()P = gD (a,7) (124)

with mean squared c-v separation (r?) = 3a?/2.

m
Core \Y
cluster o,
Valence
cluster

FIG.5 The two-cluster projectile coordinates relative to the target . The co-ordinate z-axis,
the projectile beam direction, is directed into the page.

This model allows us to construct explicitly the projectile single-particle density needed for
the OL calculation. Convoluting the intrinsic cluster densities with their motions about the
cm of the projectile, this is

pp(r) = mcg(a)(&ca T) + mvg(a)(&vv T) (125)

where the new Gaussian range parameters are

2 2
a2 = o + <m0a> L a2=a+ (m”o‘> . (126)

The model thus produces a two component projectile density, due to v and ¢, containing
different numbers of nucleons, and with different spatial extensions. Such simple two com-
ponent forms have been used widely to model density distributions of light exotic nuclei [24].
The mean squared radius of p, (r?),, satisfies

my(r?)p = me(r)e + my(r®)y + (mome/my)(r?)

= (3/2) (mya2 + mea?) . (127)
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The model shows that fixing p,(r), by a given (m.,m,) mass split and choice of the two con-
voluted ranges (é.,&,), does not specify the underlying structure of the projectile. Eq.(126)
shows that any fixed density is consistent with an infinite number of two cluster structures
having different ¢ and v rms sizes and separations. Specifically, for a fixed projectile density,
a can take on all values from zero to an upper limit

Qmaz = min [(m,/me)dy, (my/my)de] (128)

at which one or other of the cluster densities must be pointlike. If one of the original clusters
is pointlike, e.g. a, = 0, then fixing &, and &, does uniquely determine o and hence «..

Assuming the target nucleus is also described by a Gaussian density of range oy, then the
OL and FB expressions for S, take particularly simple forms. Now, in Eq.(120),

2,(0) = i 2% 1y [meg® (6, b) + g (G, b)), (129)

where g D(v,b) = (v/77) 2 exp(—b?/7?) is the normalised two-dimensional Gaussian, 42, =
o+ af, and similarly for @?. The FB S-matrix, Eq.(121), is

SFB(b) = / d5 g2 (a, 5) expliXoe(be) + i Xou (b)), (130)
o
Xo;(by) = Z%mtmjgw(ajt,bj) (131)
With § the projection of 7 in the impact parameter plane and b, = |b — m,S/m,| and

|5 + mc§’/ mp| are the impact parameters of the core and valence clusters, Figure 5. In
thls case o, = o +aj, from the convolution of the each cluster and the target density. The
two expressions are seen to agree only in the a—0 limit, when the two-body model reverts
to a description based on a single centre, and so the two-body correlations are removed.

B. Reaction cross sections

The OL and FB approaches have implications for the calculated elastic scattering differential
cross section and the total and integrated elastic cross sections, Eqs.(109) and (108) of
Section XI. To demonstrate these effects, Figure 6 shows the calculated reaction cross
sections, Eq.(110),

on = 2m /000 dbb [1—18,0)17] (132)

using onyy=4.11 fm?, appropriate to 800 MeV per nucleon projectile incident energy. We
take as a representative case m,=10, (r?)}/*=3.10 fm, with (mc,m,)=(8,2) and m;=12,

(7“2);/2:2.32 fm. The range parameters &, and @, are such that m,&2 = m.a2, so the ¢ and
v make equal contributions to the projectile rms matter radius, Eq. (127), ensuring sufficient
emphasis is given to the valence particles.

These parameters fix p,(r), SpOL, and hence the OL reaction cross section, the dashed line
in Figure 6, independently of the underlying cluster sizes and separations. The FB cross
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sections are shown by the solid symbols and line in the figure as a function of the rms
separation of ¢ and v. As the figure indicates, the ¢ and v internal densities have to become
more localised at large rms separations to maintain the fixed p,. The limiting situation
is where one valence cluster is pointlike when the maximum differences between the cross
sections calculated using the FB and OL theories are manifest.

1050 |

1000 |

o, (millibarns)

©
(]
o

900 |
o 2 4 6 8 10

0 1 2 3 4 5 6
rms c-v separation (fm)

FIG.6 Few-body (FB) and optical limit (OL) calculations of reaction cross sections for a
my, =10 projectile, composed of m.=8 and m, =2 clusters, as a function of the assumed rms
separation of ¢ and v. All calculations correspond to the same projectile one-body density,
shown as an inset.

C. The role of breakup

Although the calculations of Figure 6 use a simple model, the key result, that the FB reac-
tion cross section is smaller than that of the OL calculation, is a quite general consequence of
Eqs.(120) and (121) when the underlying constituent-target interactions are entirely absorp-
tive, and hence the Xj; are purely imaginary. This follows from the real variable inequality
[37]

exp(y) > 1+y, (133)

which results from the upward concavity of the exponential function. From this follows the
similar inequality between expectation values of an Hermitian operator Y, i.e.

(exp(Y)) > (1+Y), (134)

and, writing Y = F — (F'), where F is clearly also Hermitian, the latter inequality can be
recast as

(exp(F)) > exp(F). (135)
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Therefore with F' = iX,({b;}), which is real for absorptive V};, and taking the projectile
ground state expectation value, proves that for all b, SI'7(b) > S (b), where |S,(b)| < 1.
It follows that o9 > oL,

It should be pointed out, therefore, that including the effects of breakup of the few-body
projectile, through Eq.(121), actually reduces the calculated reaction cross sections when
compared to the use of the no-breakup optical limit, using Eq.(120). As is revealed by the
inequality S# > SO overall, the explicit treatment of the few-body nature of the projectile
results in the collision being more transparent and less absorptive. The reason for this is
that, in many configurations of the spatially separated constituents, they do not overlap
and interact with the target. This additional transparency, due to the granular nature of
the projectile, is shown here to more than compensate for the additional absorption due to
removal of flux from the elastic channel into the, now included, breakup channels.

It follows that if one compares measured high energy cross sections with those obtained from
o$% to deduce interaction radii, or nuclear sizes, then these sizes will be an underestimate of
the actual spatial extent of the nuclei in those cases where the projectile has a well developed
few-body internal structure.
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