TALENT Course 6: Theory for exploring nuclear reaction experiments Outline project proposal

Project name: Sensitivity of the 26 Al(d,p) 27 Al direct transfer reaction to the uncertainties in the potentials

Researcher(s): Vincent Margerin

Affiliation: School of Physics and Astronomy, University of Edinburgh, Scotland, U.K.

Supervisor(s): Filomena Nunes

Project outline and aims:

The satellite based observation of a characteristic γ -ray from the decay of 26 Al (E $_{\gamma} = 1.81$ MeV in 26 Mg), due to the lifetime ($\tau \approx 7.2 \times 10^5$ yr) of this radionuclide, was the first prove of ongoing nucleosynthesis in the Milky Way [1]. 26 Al g is primarily produced in classical novae. The available energy for production/destruction of 26 Al processes in those environments means that these reaction are dominated by strong and often narrow resonances (see [2] and references therein). This results in the star evolution mechanism to be strongly dependent to the nuclear reaction input.

Most spectroscopic factors for proton rich nuclei have been suggested by the study of the mirror nuclei. However the advances in RIB method in laboratory such as TRIUMF has allowed direct study of proton rich nuclei. In particular, the 26 Al(d,p) 27 Al reaction (at $E_{beam}=6$ MeV/u) was performed last year at TRIUMF. The interest lies in measuring spectroscopic factor and to compare them to the mirror nucleus 27 Si.

In this project, the angular distribution of the cross section for independent states in ²⁷Al will be investigated using, primarily, the Adiabatic Wave Approximation for the ²⁶Al+(p,n) system. That is considering the interaction of the proton and neutron with the target nucleus independently. Sensitivity of the cross sections to the choice of methods (zero-range, finite-range ...) and parameters (for the potentials) will be explored. ANC will be extracted and compared to those obtain for ²⁷Si [1].

Methodology:

The calculation will hopefully be made using the fresco code, potentially through the brush front code to the fresco input. The tutorial of Thursday week 2 developed a method to approach the problem of (d,p) transfer reactions. A first objective would be to effectively reproduce the $^{12}C(d,p)^{13}C$ experimental data with both twofnr and fresco. For the ^{26}Al case, experimental data (still preliminary) are available and can be used to evaluate the accuracy of the different method/potentials used .

Key references:

[1] D. D. Clayton et al., Astrophys. J. 280, 144 (1984).

[2] G. Lotay et al., PRC 84 (2011) 035802.