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equations of motion

laboratory

Center of mass
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cross section

The number of particle entering a detector depends on:
• flux of the incident beam
• number of scattering centers in the target
• solid angular size of detector
• the cross sectional area for the reaction to occur
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Definition of cross section:
the area within which a projectile and a target will interact
and give rise to a specific product.

Units 1b (barn) = 10 fm x 10 fm



cross section
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cross section in c.m. and lab

Total cross section:
the same in center of mass and laboratory

Angular distribution of the cross section:
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picture for scattering
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Scattering theory: single channel



Scattering theory: setting up

Incoming beam Incoming flux

Scattered wave Outgoing flux

Asymptotic wave

Scattering amplitude 7



Scattering theory: scattering amplitude and xs

Scattered angular flux and incoming flux

Cross section

Renormalized scattering amplitude
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Scattering equation: single channel central V

o short range potentials V(R)=0, R>Rn
no Coulomb for now

o positive energy time-independent Schrodinger eq to obtain f()
numerical solutions matched to asymptotic form

o spherical potentials V(R)=V(R) 
angular momentum and energy commute
initial beam is cylindrically symm (m=0) implies scattered wave is 
too: f()= f()
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Solving scattering eq: overall scheme

o Solution of scattering equation needs to match onto asymptotic form

R

a>Rn
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Partial wave expansion

o Legendre polynomials form a complete set 

o they are eigenstates of

o orthogonality relation: 

o particular form for expansion

o partial wave expansion:

o partial wave equation:
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Matching to asymptotics

o 2nd order differential equation -> two boundary conditions

1. for wfn to be finite everywhere
2. asymptotically   

R

a>Rn
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free solution and coulomb functions

o when V(R)=0, for all R

o Coulomb wave equation

o two linearly independent solutions: 
regular and irregular Coulomb functions

o two linearly independent solutions: 
outgoing and incoming Hanckel functions

Others may use different notation: H-=I and H+=O
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Sommerfeld parameter



Properties of F/G/H with =0 (Bessel functions)
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Partial wave expansion for plane wave

incoming outgoing

o at large distances the radial wavefunction should behave as

partial wave S-matrix element
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Matching to asymptotics

o numerical solution is proportional to true solution

R

a>Rn
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Inverse logarithmic derivative

oThe matching can be done with the inverse log derivative RL
o any potential will produce RL which relates to SL

R

a>Rn
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S-matrix and scattering amplitude

o to obtain the scattering amplitude need to sum the partial waves

o 1) derive the relations below
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Phase shifts

o Each partial wave S-matrix can be equivalently described with a phase shift

o scattering amplitude in terms of phase shifts

o asymptotic form in terms of phase shift

added to make the 
phase shift 
continuous
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Phase shifts as a function of energy

o attractive potentials: delta>0
o repulsive potentials: delta<0
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T-matrix

o the partial wave T-matrix is defined as the amplitude of the outgoing wave

o simple relation with the scattering amplitude
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Relations between T, S, 
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Integrated cross sections

o use properties of legendre polynomials

oOptical theorem: 
total elastic cross section related 
to zero-angle scattering amplitude
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Resonances and phase shifts

o particles trapped inside a barrier

R

oResonance characterized by J, E, 

o will show rapid rise of phase shift 

o there is usually a background in addition to the resonance part:

o in a pure case, with no background at 
the resonance energy /2
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Resonances and cross sections

o Breit-Wigner form
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Resonances and S-matrix

o S-matrix form around the resonance

o if analytic continuation to complex energies
S-matrix pole at Ep = Er –i /2
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Resonances and cross sections
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resonance signals
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Complex energy plane
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Virtual states

o neutral L=0 particles: no barrier

o S-matrix pole is on negative imaginary k-axis (not a bound state!)

o scattering length 

o S-matrix in terms of scattering length

o phase shift in terms of scattering length  
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Classical Coulomb scattering

o Coulomb trajectories are hyperbolas

o the cross section for a pure Coulomb
interaction is
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Coulomb scattering

oexamples
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Coulomb functions
o Coulomb wave equation

33



Coulomb functions

oBehaviour near the origin

oBehaviour at large distances
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Coulomb scattering – partial wave

o pure Coulomb Schrodinger eq can be solved exactly:

o generalize the partial wave form of the plane wave

o asymptotic form of the scattering wavefunction
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Coulomb scattering amplitude

oformally can be written in partial wave expansion

o series does not converge!

o without partial wave expansion one can derive the scattering amplitude

Homework: 1) Derive this expression

Point-Coulomb cross section
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Generalized scattering problem w Coulomb

o numerical solution is proportional to true solution

R

a>Rn

Coulomb+nuclear
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Coulomb+nuclear

o generalized asymptotic form defines the nuclear S-matrix

o can be written in terms of the nuclear phase shift

o combined phase shift from Coulomb and nuclear
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Coulomb+nuclear

Coulomb + nuclear phase shifts
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Coulomb+nuclear scattering

Don’t add nuclear only and Coulomb only cross sections!
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Optical potential

o Where does the optical potential come from?
Consider the original many-body problem nucleons-nucleus N+A

Split the Hamiltonian into:
o kinetic energy of the projectile 
o the interaction of the projectile with all nucleons of the target
o internal Hamiltonian of the target

The solutions for the target Hamiltonian form a complete set:

The general solution for N+A can be written in terms of the complete set above:

Wong, Introduction to Nuclear Physics, Wiley
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Optical potential

o Feshbach projection
Since at this point we still assume in our reaction model that the target stays in the 
ground state, we need to project the problem into the target ground state. 

P is the projection operator:

It picks up the elastic component:

Properties of projection operators

Now apply it to the full equation:

Wong, Introduction to Nuclear Physics, Wiley
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Optical potential

o After some algebra:

Potential acting 
between projectile 
and target nucleons

Interpretation for the formal propagator: 
multiple scattering in Q-space 

o The scattering equation can be rewritten:
with the effective potential:

Wong, Introduction to Nuclear Physics, Wiley
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Optical potential

oThis potential is generally non-local which gives rise to some complications:

o The scattering equation can be rewritten:
with the effective potential:

Often this is approximated to a local version. 
The optical model replaces this microscopic potential by a model potential 
obtained phenomenologically:

Scattering into Q-space may never return to elastic – loss of flux
Optical potential needs to have an imaginary term!

Wong, Introduction to Nuclear Physics, Wiley
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Homework: 2) derive this equation



Optical potential
Radial shape of the volume term for 

p+A at different beam energies: 
folding using Paris potential

oExample of a microscopically derived optical 
potential: folding

oIn principle antisymmetrization need to be 
included:

direct exchange

free or medium NN interaction?
density dep?

Wong, Introduction to Nuclear Physics, Wiley
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Optical potential
In principle antisymmetrization need to be 
included:

Direct part depends of the density:

The exchange part is non-local in general

Radial shape of the direct and 
exchange part for p+A optical 

potential at different beam energies: 
NN-Paris potential

Wong, Introduction to Nuclear Physics, Wiley
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Optical potentials

o loss of flux - absorption (W<0)

o all the terms to be considered:

o Nucleon potentials as described with Woods-Saxon shape
(to mimic the density distribution in nuclei)

For nucleon interaction V=40-50 MeV, r=1.2 fm and a=0.6-0.65 fm

W

o Sometimes imaginary also defined at d/dR(Vws(r)) - surface

Vc(R) + V(R) + i W(R) + Vso(R)
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elastic scattering: examples

TRIUMF summer Institute , Antonio Moro48



elastic scattering: examples

TRIUMF summer Institute , Antonio Moro49



elastic scattering: examples

TRIUMF summer Institute , Antonio Moro50



elastic scattering: examples

TRIUMF summer Institute , Antonio Moro51



elastic scattering: examples

TRIUMF summer Institute , Antonio Moro52



reaction and absorptive cross section

Reaction cross section=relates to flux leaving the elastic channel
For simple spherical potentials (single channel) the  reaction cross section 
corresponds to the absorptive cross section

It can be defined more generally in terms of the S-matrix
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