Scattering theory Il: continuation

Filomena Nunes
Michigan State University
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Scattering amplitude nuclear only Coulomb+nuclear
1 o0
f(6) = 5 z_(:)(ZL‘*‘l)PL(COS OHESL—1  f0) = =z LZ(:)(ZL—H)PL(COS )e>oLm (gt — 1)
o =22 _| L S oL inpyeoners, - v o 2
® =35 = |7 LA S =D g (0) = [fe(0) + £(0)] = (e (0)]

Integrated cross sections:

2 /4
= do [ aosinoowr g o 23T Z(2L+l)f [~ W (R)] xL(R) dR

— 21 [H do sin Of (0)|?
0
o T
= 5 Y L1 8, or = 73 ) _QL+D(1 — ISLP)
=0 ;

47— .
— = Z(QL—I—I) sin~ oy,
L=0
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O obtained from:
1) Fitting a single elastic scattering data set (local optical potential)
2) Fitting many sets of elastic data at several energies on several
targets (global optical potential)
3) Theory (folding models — depend on density distribution)

o real parts get weak with beam energy (become repulsive at 300 MeV)
0 imaginary terms dominate at the higher energies

o Coulomb interaction: uniform charge distribution with radius R,

2
3 __K )R‘ for R < Rcoul

2 T 2
ZRCoul Coul

% for R > Rcoul

VCUUI(R) — sze2 X (
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o real part weaker for neutrons that for protons

1
V(R) = Vo(R) + Efz A

Isoscalar and isovector components

Vr(R)

O spin orbit term: couples spin and orbital motion



p+Ni78 Coulomb and Nuclear;

NAMELIST

&FREsco hcm=0.1 rmatch=60
Jtmin=0.0 jtmax=50 absend= 0.0010
thmin=0.00 thmax=180.00 thinc=1.00
chans=1 smats=2 xstabl=1
elab(1:3)=6.9 11.00 49.350 nlab(1:3)=11/

&PARTITION namep="'p' massp=1.00 zp=1

namet="Ni78' masst=78.0000 zt=28 qval=-0.000 nex=1 /
&STATES jp=0.5 bandp=1 ep=0.0000 cpot=1 jt=0.0 bandt=1 et=0.0000 /
&partition /

&POT kp=1 ap=1.000 at=78.000 rc=1.2 /

&POT kp=1 type=1 p1=40.00 p2=1.2 p3=0.65 p4=10.0 p5=1.2 p6=0.500 /
&pot /

&overlap /

&coupling /

Box B.1 FrREsco input for the elastic scattering of protons on ®Ni at several
beam energies
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oWhich curve correponds to highest energy?



o do,/d6 always forward peaked! Remember ratio to rutherford...

0 optical potential is energy dependent

orelation of R, with diffraction pattern
o relation of R, and L., of absorption S(L)

o relation with W and flux removal from elastic (absorption cross section)

o are the results converged? Needs to be checked per energy
o what were the difficulties in the analysis?



o so far we have considered p+t->p’ + t’

0 now we need to consider:
(a) Scattering of identical fermions: p = ¢ of odd baryon number:

(b) Scattering of 1dentical bosons: p = f of even baryon number; and
(¢) Exchange scattering: p’ = t and ' = p, and p is distinguishable from ¢,

+1 for boson-boson

o consider an exchange index ¢ = _ _
¢ = —1 for fermion-fermion
T Mo M o
P[)quszo:(RX9§p9$f) —= 8 J::( R)(a ‘fraé%p)

o — (_l)pr



o first identical
spinless particles

1kR
PUmR) = A {em 10— ]

o for two identical particles the wfn should be

Lp;l.Sym (R) _ 11”asym(R) + ¢ 1]”asym(_R)
O scattered outgoing wave properly symmetrized should be:

oikR . QeikR
R = fe ( )T

WY(R) = Alf (0) + &f (T — 6)]



=%
o
NSCL

P;(cos(m —8)) = (—=1)EPy(cosh)

0 cross section for identical particle scattering
o (0) = If:()° = [f () +¢f (x —O)°
= [F ()" + If (x — ) +2e Re f(8)"f (m — 6).

o the partial wave expansion for the scattering amplitude is:

1 o0
AOE LXﬂj}(zm1)}'3,;(cosQ)TLU +e(—=DH]

For bosons, odd partial waves do not contribute!
Even partial waves are doubled!



O permutation best done in LS coupling:

Pyl L. 1S o) = (= DE= 15D L, 1) S o)
o the partial wave expansion for the scattering amplitude is:

£5(8) = 7 Y QLADPL(eos T 4 (= )H5 bl
L=0

— %Z(zL—I—l)PL(COS HTL[1 4+ (—1F]
L=0

For S=0 odd partial waves do not contribute!
For S=1 even partial waves do not contribute!



0 characteristic interference patterns for different spin states!

100 — — 100 ——

Cross section
6]
o
1

0 1 1 1 1 1 1 1 1 L 0 1 1 1 N N 1 1
O 30 60 90 120 150 180 O 30 60 90 120 150 180
f (deg) 6 (deg)
(a) Bosons, Fermion singlet (b) Fermion triplet

Fig. 3.9. Fermion singlet (a) and triplet (b) nucleon-nucleon scattering cross
sections, assuming pure Coulomb scattering with n = 5. Case (a) also applies
for boson scattering. The cross section is in units of 52 /4k>.



Comparing theory and experiment
{p; } Inputs parameter set
o®P(i) experimental data (Ac standard deviation)

Measure of discrepancy

N th,; exXp s\ 2
s o (@) — o (i))
= Z Ao (i)? '

i=1

If theory agrees exactly with experiment 2=0 (very unlikely!)

What is statistically reasonable ot(i)- c=r(i)~ Ac(i) so x>°~N (or ¥?/N~1)

If ¥2/N>>1 then theory needs improvement
If ¥2/N<<1 errors have been overestimated



Comparing theory and experiment
{p; ,s} inputs parameter set (s Is overall scale)
o®P(i) experimental data (Ac standard deviation)

Measure of discrepancy

(s —E[s)? < (o) — s 0%P(i))>
— 2 +Z

(YZ
As Ao (7)?2

i=1
If theory agrees exactly with experiment 2=0 (very unlikely!)
What is statistically reasonable o(i)- c=r(i)~ Ac(i) so x*~N+1 (or y?/(N+1)~1)



Probability distribution for a set of random variables

(normal distribution)

)2
£x) = (x u)]

]
cX —
V21 A p[ 2A2

Mean u=E]|x]

Standard deviation A

A? = E[(x — u)?] = E[x*] — 2uE[x] + pu* = E[x*] — °

ElX]| = [Xf(x)dx



Probability that a data point x; with variance A? is correctly fitted by theory v,

£y 1 (xj — yi)*
iLYVi) = eXp| —
: V21 A, P 2A?

For many statistically independent points the joint probability IS:

2
Piop = (23‘()_%&_1@ Xp __Z (X _)1) :|

B!
= (QN)_%A_IEXP ——X{I,

A=TTY A




Probability distribution for a set of correlated variables x={X,...,X\}
might no longer be normal

1 |
fx)=Qm) T |V[2 exp[—i(x — 'V (x - u)]

Symmetic covariance matrix

Vi =E[(xi — i) (xj — )]

Diagonal terms are the standard deviations squared
Off diagonal depend on correlation coefficients



Probability that a data point x; with variance A?is correctly fittend by theory v,

£y 1 (xi — ¥i)*
iLYVi) = eXp| —
RV, W 2A?

For many statistically independent points the joint probability IS:

2
Piop = (23‘()_%&_1@ Xp __Z (X _)1) :|

— (231)_% A~ exp —leiI,
)2
A=H§-VA5 XQ:Z(% i
Using this we can 2 _ (y _ v VIix—y)

generalize the
Chi2 definition by:

N
=3 =3IVl — )



Adding together N-squares of independent normal
distributions z2 with zero mean and unit variance

N

2 _ 2 1 N

X _E Z; (X2 = _ (;;22)2 o—X2/2
i=1 21_1(3)

E[X’]=N: V(X?)=2N: o(X?) =V2N

For N>20 the Chi2 distribution becomes close to the normal
distribution.
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When theory predicts exactly the statistical mean of experiment

vi = Elxi]l =

2 2
2= (xi = vi) — (i = 1) have zero means

I 2 2 ) .
A; A; and unit variances

‘?’r ziz follows ch2 distribution

mean N and variance 2N

If z, have normal distributions X% =

Thus our reasoning y?/N~1



Let us consider the expansion of chi2 around a mimimum found for
the set of parameters {p,° }

P
X(pro.pp) = X2 pp) 5 D Huw(pw — o) (pn — P))

mn=1

=X°p)+1p-p) Hp-p"

Hesse matrix _ _
52 Covariance matrix

_ 2 _ -
Hmn— apmaan (P15 PP) (Vp) l:%H or VP =2H .

The fitting probability can be defined in terms of the Hesse matrix:

| . x2pY)

P
Pt = —5—¢ 2 exp[—ﬁZ@m—p%)Hmn@n—p2>}
Hin




This happens with argument of exp is 1/2

P
%Z(pm _p;%)Hmn(Pn _Pg) =1
mn

Using the Taylor expansion this can be written as

XX (pro....pp) = X2 (Y. pp) + 1



Experimentalists have cross sections which they expand in

legendre polynomials
o(f) = Z apPa(cost)
A=0

We know more about the coefficients from reaction theory:
2

o(0) = éZQL—I—l)PL(COS T,

1.=0

- kiQ Y QL+D)QL +1)Pr(cos 0)Pp(cos )T Ty
LL'

|
an =75 Y QL+1D)L +1)(L0, L0|A0)*T; T
Ll



«Strongly non linear (fitting is done by iteration only)
*Need data at large scattering angles
*Spin orbit does not strongly affect elastic cross sections
eAmbiguities:
Ulow energy (phase equivalent potentials)

Umedium energy (volume integral V,.=R,,? )

J = [V(r)drzzm[ V(ryr’dr
0

Uheavy nuclei (governed by tail of V)

V(R) ~ — wse_(R—Rws)/ﬂ*w:g — _szgRTUS/ﬂwse_R/ﬂ’w.s



Elastic : bare potential versus the optical potential
«Can ignore dynamic polarization
*Redo entire fitting in coupled channels
«Switch off the backward coupling

Inelastic scattering
First use first order theory
*Then detail adjustment of optical potential
*Plus non-linearities in deformation
*Plus higher order effects

*Transfer
First 1step dwba (SF can be cleanly extracted)
*Higher orders (other inelastic channels CCBA or other
reaction channels CRC)



«Start with simplest data and simplest reaction model
(for example elastic and optical model)

*Restart from any intermediate stage

If there are ambiguities, do grid searches and look at correlations in
errors

«Artificially reduce error in data points if theory is having a hard time to
get close in some region

If minimum is found near the end of the range of a parameter, this is
spurious — repeat with wider range

«Constrain with other experiments

*Two correlated variables : combine into one

Progressive improvement policy



Introduction to sfresco
Antonio Moro



Solving the problem in a box R=0,a

. B2, d*> L+ _ 12
Basis states [_ﬂ(@ - ) +V(R) — gn] w,(R) = 0 en, n = 1,2,...,
d w'(R)
Fixed logarithmic derivative ~ £ = g Inw(®) = o R R=a

4) Prove that w form an orthonormal basis inside box.

N
Solution expanded in the R-matrix basis  y (R) = ZAnwn (R)
n=I1

Then Expansion coefficients can be defined by A, = an w,(R) ¥ (R)dR
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N
After some manipulation: x(a) . h* wy(a)?
x'(@)—pxl@ = 2nen—E
Generalized smgle-channel R-matrix Once you have the R-matrix,
R _ Z 1’ wn(a)2 you have the S-matrix
— 2ua e,— S_ H™ —aRH"™—BH™)
B + —aRHT—BHT)
Solution can be expressed as:
N
h? wn(a)
XR) =) | s————[x'(@) = Bx(@]wa(R)
n=1 pa

R-matrix in terms of reduced width amplitudes

h2 @) N yz
. n=1 n
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Fig. 6.1. Convergence of the one-channel scattering wave function with varying
numbers of basis states, for ¢ = 8fm and 8 = 0. We plot the real part of p;

neutron scattering wave function on “*He at 5 MeV.



Scattering theory Ill: integral forms

Filomena Nunes
Michigan State University



21
WQ(R) — 50:0:,-Fa (R) + hzx

f GY(R,RHQ,(R)dR',

4) Work out the explicit form for G(R,R’) in coordinate and momentum space
How do the boundary conditions come in?

5) Reminding yourself of the asymptotic form in terms:

w::mg (R) — Fa: (R)‘Sa:ur,- + H,«;;I—(R)Tafxg

derive the relation for T:




Split the Hamiltonian in Free Hamiltonian and residual interaction H = Hn + V

« any other interaction can in principle be include in H,
* V should be short range Hy = A v 2

Free scattering equation: homoageneous (HH - E)ég(!‘) =0
[ #u(menir)dr = sk - k)
[ $i(r)du(r) dk = 8 — 7')

General Scattering equation: inhomogeneous

(Ho — EYié(r) = -V ()
Solution can be expre?s!sed as:
Vi (r) = de(r) —,{;— /G+(r, W'yt (r') dr’

h?
Where the Green’s function is solution of: (Hy — E)G*(r, ') = ——6(r — )
with outgoing boundary conditions 2u
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- . _ + _ + + where the Green’s function operator is
Rewriting In short form: Vi = TGV related to the Green’s function by

G*(r,r') = (r|G*|)

The Green’s function operator can be 1

expressed by Gt = lin}, TP
~0 L — My

equivalent to the differential form:

(E = Ho)y{ = (E — Ho)¢e + VY

Lippmann-Schwinger integral equation:

1
+ _ +
wk ¢k+ E - Hu+i£vwk

Born series expansion

UF = ¢+ GV (e + GV
= ¢k + GV + GHVGCHV (e + GV })

= (1+ i(G*‘V)”)m
_ n=| —



Define a transition matrix (t-matrix) such that: (ék’lti‘f’k) o (¢k:]V|zf;;)

Remember the Born series?  ¥§ = ¢ + GV (dp + GV}
= ¢p+ GV +GTVGTV (e + GHVY})
= (1+ Z(G"’V)")qﬁk

Multiply by: {@w |V
and we can obtain an operator form of the equation in ¢ = V(1+ Z(G""V) )
terms of the t-matrix n=1

t=V + VG*t

often used in few-body methods



A Lippmann-Schwinger equation
w — Cb + G+Q ¢ is incoming free wave

(only non zero for elastic channel)

_ ~+
— Cb T G VW9 v is full wavefunction

T=-— h2k Oy = f ¢ (R)V (R)Y (R)dR.

Rk

Tk, k) = * R|V|U(R: k).
fK;K) =

2mh

9



Consider your potential can be split into two parts: U=U,;+U,

~

Free: [E—=T]p =0 Gy =[E-T]! ¢ =F
Distorted: [E—T—U;]x =0 x=¢+Gi Uy x> ¢+THHT
Full: [E-T-U-U2ly =0 ¢ =¢+GI(U+U)Y ¢ — ¢+ TUHE




Free: [E-T]$ =0 G =[E-T]"! ¢ =F

Distorted: [E—T—U;]x =0 x=¢+GIUy x —> ¢ +TOHT

Full: [E-T-U;—-Usl¢y =0 ¢ =¢+GHU Uy ¢ — ¢ +TIHHET
2k

e RIER AT

=[(X — GU (U, + Ua)y dR

= [ [X(U1+U2W — (é{,FUlX)(U1+U2)V/] dR.



Free: [E-T]$ =0 G =[E-T]"! ¢ =F

Distorted: [E—T—U;]x =0 x=¢+GIUy x —> ¢ +TOHT

Full: [E-T-U;—-Usl¢y =0 ¢ =¢+GHU Uy ¢ — ¢ +TIHHET
hk

T f XUy + U — x UG (U, + U] dR

_ [[x(Ul + U)W — x UL — )] dR

- f[qwlx + xUsy] dR

= (| U11x) + (x |02 |).



Free: [E-T]$ =0 G =[E-T]"! ¢ =F
Distorted: [E—T—U;]x =0 x=¢+GIUy x —> ¢ +TOHT
Full: [E-T-U;—-Usl¢y =0 ¢ =¢+GHU Uy ¢ — ¢ +TIHHET

T+ — 7 4 72D

21
T>(D — hzkfozlﬁ dR



X=¢+GUlp+GFU[p+ GFUI---11]
=¢p+GiUG+GIUGTUS+ GIUGTUGGTUG + -+,

214 _ _ A
T=—— @ 1U19) + @OWETUIG) + - .
out: X X X X
U
U
Go
U Gy v
U G
in: ¢ ¢ b b
No scattering Single Double Triple scattering



T-_2H

L [61U19) + @O W EFUIP) +-- ]

l

TPWBA _ h2k (qb( )|U|¢)

2 [
TEWBA = —% ; Fr(0,kR) U(R) F1(0,kR) dR.
A _
FPWBA (g) — - /dR 4R [ (R)
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21
T(+2) _ () _ %(X( )|U2|’1£")

post
214

= [O10200 + W26 Ual) + -

T+ 7D _
h2k

If U, is weak we might expect
the series to converge
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21
T(+2) _ () _ %(X( )|U2|’1£")

post
214

[0 + A ONG Ul + - |

T(1+2) — T(l) _
h2k

If U, is weak we might expect
the series to converge

24 _
T — T _ 28O0, )

h’k .
prior
2
T+ _T(H _ L(X(—HUZW(JF)) [post],
a; oa; h2ka @ Ai
2 _ :
= Thoy = 5= W 1U2xs?) prior]



Born series iIs truncated after the first term

21
TOWBA _ (1) _ m(x( |U>x)

U, appears to first order

There 1s similarly a second-order DWB A expression

Ti{;? DWBA _ _;12; [(X.::E: )|U2|Xar;‘) + (X;;E: )|U2GII_U2|XH.£)] .

U, appears to second order



J— 2“ o - e
T2nd DWBA _ o [(Xé )|U2|Xa‘5)+ (Xé )|U2GII_U2|X&*§):|.

* h2k,,
4+ - 4+ 4+
& ' A
: o ]
| | |l | |
: 2+ - :': 2+ v : Y 2+
‘ | A | | A |
| | | | | |
: : O+ : * : V O+ V V O+
First order Second order All orders



Differential equations:
« Direct integration methods (Numerov, Runge-Kutta)
e Iterative methods
e R-matrix methods
» Other expansion methods transforming the problem into a

diagonalization problem (Expansion in Pseudo-states)

Integral equations:
o Iterative methods (smart starting point)
* Transform into matrix equations
* Multiple scattering expansion



Effects of neglected direct reaction channels: 2 channel example

[Ty + Uy — E1]vi(R) + Vioy(R) =0
[T2 + Us — E2]Y2(R) + Vo1 Y1 (R) =0
Formally we can solve the second equation and replace it in the first:

[Ty + Uy + V2GS Vo) — E1Y (R) = 0.

Where an additional interaction has appeared to account for the effect of the
second channel — this interaction is in general non-local and depends on E,

Usually referred to as the dynamic polarization potential [Vppp = Vlzé;_ Vo1

Vopp¥ri = Vi2GaVa

0. @)
: : = VIZ(R)/ G2(R,R": E2) Va1 (R Y (R')dR'
Bare interaction [/, 0



Rcson+*He

3.07 BCin+*He

Q-value; MeV
(8]}
|

10 —

12.14 _
Y et He

Fig. 1. )-value diagram for one and two-neutron transfer
the system SHe + '2C. The (Q-value for the Mo ground state
very positive and introduces a mismatch. For some transitio
one- and two-step processes are indicated.




O mass partitions x
o spins |, and I, and projections p, and p,

‘S basis” ChannelspinS I, +I; =S L+S = J
‘T basis’  Projectile J L+1L,=1J, Jp+1I=Jw




o JJ couplings scheme

WO Ry, &), &)
= ). b, Gy, Gty (l’ix)Rixwimt(Rn
L1,J,I:M ppMg i
(LM , Ly pup | JpMa) (T pM g, It it | J ot Mot )
EZ_[iLYL(ﬁx)w}“f(sp)] ® ), (&)} RixwitO%Rx)

J tot M tot

= Z xpt : (L), Iy JotMiot) Yo (Ry) /Ry
= Z s JrotMiot) %{“’t (Rx)/Rx.
(04

{xpt, LI,,J,I;}



o LS couplings scheme

VR0 = D [IVLR) @ 4776 @ 81 @) |

LSk
Jio
X w‘gt ‘(Ry) /R

= Z lxpt © L(Ip, 11)S; JiotMiot) Wgtm (Ry)/Rx
p

=Y " |B: JiotMior) Y5 (Ro) /Ry
p

fot M tot

p is the set of quantum numbers {xpt. LI,[;S}



o Spin coupling — transforming between LS and JJ

(@|B) = JQ2S+1)(2] 1) W(LLyJils: J,S).

Free field limit!

Vo Ry 6y bk = e Rl (&)1, (&)
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o when the interaction is present

Ji tot

i Vaw; (Ry)
;f;ig (Rx,%—p,;g'r, ki) = Z Zla;JtotMtot) - A{f;:‘:f;“t( o K;)

. Ry
JiotMior A

where we define an ‘incoming coefficient’

JiotM,
A'utot Mrmt (aj: k:)

= k. ZYfi(ki)*(LiMi,Ipz-upilinmg)(Jpsz,fﬁurilJ[O[Mm[).
1
M;m;

o parity of the full wavefunction
T = (_1)L5Txp3’7xr



0 asymptotic behaviour in terms of S-matrix

ir
U™ (R = 5 [ Ok RQua ) H sk RO

o0 asymptotic behaviour in terms of T-matrix

w;taozn (Ry) = F1;(Nas ke Rx) daa; + H[-,I_(n“’kaRx

Saa_’i — 30:05,- + 2iTﬂfﬂfi



H = Hyp(&) + Hu (&) + Te(Ro) + Ve (Ry. &, &)

Hp (Ep)y) (£p) = expby) (&),

I:QX
Hu (67 (&) = end] (&), a
ViRe,&p &) = ) Vit — 1))
iep,jet

within the same partition, the Schrodinger
equations becomes a coupled equation:

[T (Re) — ExprlVa(Re) + Y VI Yo (Ry) = 0.
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o For unpolarized beams, we have to sum over final m-states and average

over Initial states:

| ~ 2
85
prf( ) (prl—l—l)(zln-l-l) MPHIZMJMI Hp“f*“ﬂi-u’ﬁ( )
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o0 We can obtain the scattering amplitude in terms of the T-matrix or the
S-matrix:

oo ad|

R=R, _
T,ﬁJtDtH(Rx) }: Hi:(na:&kaRx)ijtH N Ly lkaRfotntJT

t Ry=R;, :
(@) EbY, GOV (Re &p & k) "= 0, (O) e /R,

o From the two above equations one can derive

xpt 2 : c—Lg xp
fﬂp#r-#pfﬂr Z ¢]pﬂp Irﬂr |O[ JtO[MtOt)
Ki k Jiot TMior Ai
Jiot M, : Jiot T
X Aufotutot (ai, k:) Tatgft,' '



o plugging in the definition of A and taking into account the Coulomb part:

Fxpt _
fﬂp#r,#piﬂ-ri (©) = S“P”Pi 3'”4”'1;' 5xpr,x;p,:

4
+ ? Z (LiMistgﬂp,'l']p,gmi)
" LiLdp JpmimMiJio

J i I g ot Mo ) (LM IpﬂpUpm)( pht, I [ iotMior)

o identically one can write the scattering amplitude in LS coupling.
o identically one can write the scattering amplitude in terms of S-matrix

"'Jtotﬂ' "'Jtotﬂ'

T — l[&zxm —

oo 2 oo ]



0 channel cross section

xpt
26, +1)(2I;;+1) Z prfir.up;u: (@)

Hpltt-Fp; [t

2
prr(Q) — )

o total outgoing non-elastic cross section

Oxpt = 27T f d6 sin & oy (0)
0

JT l lot
- 2Jo+1)|S
k7 Qlp+D)QL+1) | XL:, 2o+ 1) IS4, I

_ JtotJT
- _') Z g4l cwr,

l Jtm.T[UO.’,



o flux leaving the elastic channel (depends only on elastic S-matrix elements)

T |
= 2ior+1)(1 — |87 |2
k;z (2]P5+1)(21fi+1)htzna.( ot 11— [S5% )

T
Jiot |2 o
= E g1 (1 — 1S 17), yimilarly.
U Sy

o the total cross section is elastic plus reaction cross sections

OR

Otot = OR + Og¢]

2 ]
= 2Jior+ Q1 — ReS)T
& (211”'“)(21"'“)1[;-( N

O absorption cross section 0Op = OR — E Oxpt
XpIFEXipili




0 absorption cross section OA = OR — E Oxpt

o the absorption cross section depends on the imaginary part of the
optical potential (W<O0)

2 4 o
=y X [ WaRO1 10T ROF aR,

! JtotJ’Tai
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Consequence of hermiticity: S-matrix is unitary Z aaz =90

maf ’
Even if the S-matrix is not unitary, it may be that: |§,w_ |2 — |éa'af |2
I I

3) Prove that above condition is sufficient for detailed balance:

kZ (21, +1) (21, +1)
Xipiti:xpt = &2 (21p+1)(21t‘|‘1) Oxpt:xipit;

s 1 Jiow

tot Ty




