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What we learnt?
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Scattering amplitude nuclear only Coulomb+nuclear

Integrated cross sections:



Optical potentials

o obtained from: 
1) Fitting a single elastic scattering data set (local optical potential)
2) Fitting many sets of elastic data at several energies on several

targets (global optical potential)
3) Theory (folding models – depend on density distribution)

o Coulomb interaction: uniform charge distribution with radius Rcoul

o real parts get weak with beam energy (become repulsive at 300 MeV)
o imaginary terms dominate at the higher energies



Optical potentials

isoscalar and isovector components

o real part weaker for neutrons that for protons

o spin orbit term: couples spin and orbital motion



elastic scattering in fresco
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elastic scattering in fresco
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oWhich curve correponds to highest energy?



Comments on homework (elastic scattering)

o del/d always forward peaked! Remember ratio to rutherford…

o are the results converged? Needs to be checked per energy
o what were the difficulties in the analysis?

o optical potential is energy dependent

orelation of Rr with diffraction pattern
o relation of Ri and Lmax of absorption S(L)

o relation with W and flux removal from elastic (absorption cross section)



Direct and exchange amplitudes

o so far we have considered p+t -> p’ + t’
o now we need to consider:

o consider an exchange index



Direct and exchange amplitudes

o for two identical particles the wfn should be

o first identical
spinless particles

o scattered outgoing wave properly symmetrized should be:



Direct and exchange amplitudes

o the partial wave expansion for the scattering amplitude is:

o cross section for identical particle scattering

For bosons, odd partial waves do not contribute!
Even partial waves are doubled!



Direct and exchange with spin

o the partial wave expansion for the scattering amplitude is:

o permutation best done in LS coupling:

For S=0 odd partial waves do not contribute!
For S=1 even partial waves do not contribute!



Direct and exchange with spin
o characteristic interference patterns for different spin states!



Fitting data

Comparing theory and experiment
{pj } inputs parameter set
exp(i) experimental data ( standard deviation)

Measure of discrepancy

If theory agrees exactly with experiment  2=0 (very unlikely!)

What is statistically reasonable th(i)- exp(i)~ (i) so 2~N  (or 2/N~1)

If  2/N>>1  then theory needs improvement
If  2/N<<1  errors have been overestimated
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Fitting data (including an overall scale)

Comparing theory and experiment
{pj ,s} inputs parameter set (s is overall scale)
exp(i) experimental data ( standard deviation)

Measure of discrepancy

If theory agrees exactly with experiment  2=0 (very unlikely!)

What is statistically reasonable th(i)- exp(i)~ (i) so 2~N+1  (or 2/(N+1)~1)
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Multivariate theory

Probability distribution for a set of random variables 
(normal distribution)

Mean

Standard deviation  
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Chi2 and the covariance matrix

Probability that a data point xi with variance 
i is correctly fitted by theory yi

For many statistically independent points the joint probability is:
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Multivariate theory (many correlated variables)

Probability distribution for a set of correlated variables x={x1,…,xN}  
might no longer be normal 

Symmetic covariance matrix

Diagonal terms are the standard deviations squared
Off diagonal depend on correlation coefficients
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Chi2 and the covariance matrix

Probability that a data point xi with variance 
i is correctly fittend by theory yi

For many statistically independent points the joint probability is:

Using this we can 
generalize the 
Chi2 definition by:
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Chi2 distribution

Adding together N-squares of independent normal 
distributions z2

i with zero mean and unit variance

For N>20 the Chi2 distribution becomes close to the normal 
distribution.

19



What is a perfect fit?

When theory predicts exactly the statistical mean of experiment

If zi have normal distributions 

have zero means
and unit variances

follows ch2 distribution
mean N and variance 2N

Thus our reasoning 2/N~1
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Expanding chi2 around a minimum

Let us consider the expansion of chi2 around a mimimum found for
the set of parameters  {pj

0 }

Hesse matrix
Covariance matrix

The fitting probability can be defined in terms of the Hesse matrix:

21



Allowed parameters within 1sigma

This happens with argument of exp is 1/2

Using the Taylor expansion this can be written as
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Ex: legendre polynomial fitting

Experimentalists have cross sections which they expand in 
legendre polynomials

We know more about the coefficients from reaction theory:
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Ex: optical potential fits (optical model)

•Strongly non linear (fitting is done by iteration only)
•Need data at large scattering angles
•Spin orbit does not strongly affect elastic cross sections

•Ambiguities:
low energy (phase equivalent potentials)

medium energy (volume integral Vws=Rws
2 )

heavy nuclei (governed by tail of V)
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Ex: multichannel fits

•Elastic : bare potential versus the optical potential
•Can ignore dynamic polarization
•Redo entire fitting in coupled channels
•Switch off the backward coupling

•Inelastic scattering
•First use first order theory
•Then detail adjustment of optical potential
•Plus non-linearities in deformation
•Plus higher order effects

•Transfer
•First 1step dwba (SF can be cleanly extracted)
•Higher orders (other inelastic channels CCBA or other 
reaction channels CRC)
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Stategies for chi2 fitting
•Start with simplest data and simplest reaction model

(for example elastic and optical model)

•Restart from any intermediate stage

•If there are ambiguities, do grid searches and look at correlations in 
errors

•Artificially reduce error in data points if theory is having a hard time to 
get close in some region

•If minimum is found near the end of the range of a parameter, this is 
spurious – repeat with wider range

•Constrain with other experiments

•Two correlated variables : combine into one

Progressive improvement policy
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Introduction to sfresco
Antonio Moro



R-matrix method for solving equations: single channel

Fixed logarithmic derivative

Basis states

Solution expanded in the R-matrix basis

Then Expansion coefficients can be defined by

Solving the problem in a box R=0,a

4) Prove that w form an orthonormal basis inside box.

28



Solving equations

Solution can be expressed as: 

Generalized single-channel R-matrix

R-matrix in terms of reduced width amplitudes

Once you have the R-matrix, 
you have the S-matrix

After some manipulation:
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R-matrix

Much more on R-matrix in week 3!
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integral equations: green’s function methods

5) Reminding yourself of the asymptotic form in terms: 

4) Work out the explicit form for G(R,R’) in coordinate and momentum space
How do the boundary conditions come in?

derive the relation for T:
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Formal solutions to Scattering

Free scattering equation: homogeneous

• any other interaction can in principle be include in H0
• V should be short range

Where the Green’s function is solution of:
with outgoing boundary conditions

Split the Hamiltonian in Free Hamiltonian and residual interaction

Solution can be expressed as: 

General Scattering equation: inhomogeneous

Wong, Introduction to Nuclear Physics, Wiley
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Lippmann-Schwinger Equation

The Green’s function operator can be 
expressed by

where the Green’s function operator is 
related to the Green’s function by 

Born series expansion

Rewriting in short form:

equivalent to the differential form:Lippmann-Schwinger integral equation:

Wong, Introduction to Nuclear Physics, Wiley
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Lippmann-Schwinger Equation

Remember the Born series?

often used in few-body methods

Define a transition matrix (t-matrix) such that:

and we can obtain an operator form of the equation in 
terms of the t-matrix

Multiply by:

Wong, Introduction to Nuclear Physics, Wiley
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Integral forms and T-matrix approach

 is incoming free wave 
(only non zero for elastic channel)

 is full wavefunction

Lippmann-Schwinger equation
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two potential formula: definitions

Consider your potential can be split into two parts: U=U1+U2
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two potential formula: derivation 1
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two potential formula: derivation 2
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two potential formula: result

40



Born series
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plane wave Born approximation (PWBA)

i
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two potential scattering: post

If U2 is weak we might expect 
the series to converge

post
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two potential scattering: post and prior

If U2 is weak we might expect 
the series to converge

prior

post
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distorted wave Born approximation (DWBA)

Born series is truncated after the first term

U2 appears to first order 

U2 appears to second order 
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multiple orders in DWBA
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Method for solving the problem

Differential equations:
• Direct integration methods (Numerov, Runge-Kutta)
• Iterative methods 
• R-matrix methods
• Other expansion methods transforming the problem into a 

diagonalization problem (Expansion in Pseudo-states)

Integral equations:
• Iterative methods (smart starting point) 
• Transform into matrix equations
• Multiple scattering expansion
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Bare and effective interactions

Effects of neglected direct reaction channels: 2 channel example

Formally we can solve the second equation and replace it in the first:

Where an additional interaction has appeared to account for the effect of the 
second channel – this interaction is in general non-local and depends on E2

Usually referred to as the dynamic polarization potential

Bare interaction
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multi-channels
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Multichannel definitions

o mass partitions x
o spins Ip and It and projections p and t 
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Multichannel wavefunction

o JJ couplings scheme
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Multichannel wavefunction

o LS couplings scheme
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Multichannel wavefunction

o Spin coupling – transforming between LS and JJ

Free field limit!
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Multichannel wavefunction

o when the interaction is present

o parity of the full wavefunction
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Multichannel S-matrix and T-matrix

o asymptotic behaviour in terms of S-matrix

o asymptotic behaviour in terms of T-matrix
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Multichannel coupled equations

Rx

p

t

within the same partition, the Schrodinger
equations becomes a coupled equation:
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Multi-channel cross section

o For unpolarized beams, we have to sum over final m-states and average 
over initial states:
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Multi-channel scattering amplitude

o We can obtain the scattering amplitude in terms of the T-matrix or the 
S-matrix:

o From the two above equations one can derive

ki k

 is the angle between k and ki
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Multi-channel scattering amplitude
o plugging in the definition of A and taking into account the Coulomb part:

o identically one can write the scattering amplitude in LS coupling.
o identically one can write the scattering amplitude in terms of S-matrix
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Integrated channel cross section

o total outgoing non-elastic cross section

o channel cross section
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Reaction cross section

o flux leaving the elastic channel (depends only on elastic S-matrix elements)

o the total cross section is elastic plus reaction cross sections

o absorption cross section
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Absorption cross section

o the absorption cross section depends on the imaginary part of the 
optical potential (W<0)

o absorption cross section
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detailed balance

Consequence of hermiticity: S-matrix is unitary

Even if the S-matrix is not unitary, it may be that:

3) Prove that above condition is sufficient for detailed balance:
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