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Session aims: part 1

To discuss approximate solutions of the Schrodinger 
equation for states of two, three or more bodies at ‘high 
energies’ by introducing the eikonal (forward-scattering 
dominated) approximation of the reaction dynamics.

To bring out the importance of the eikonal S-matrix, a 
function if the impact parameter of the projectile, or of a 
component of the projectile, in this formulation of the 
reaction and scattering of the interacting systems.

To gain an impression of how accurate the eikonal 
approximation is as a function of the projectile energy, 
and to see how one can describe both point particle and 
composite projectile scattering using these methods.



Radioactive ion-beams: fragmentation facilities

RIKEN RI BEAM FACTORY

---A Dream Factory for Particle Beams---



Exotic nuclei production - projectile fragmentation
Random removal of protons and neutrons from heavy projectile in 
peripheral collisions at high energy - 100 MeV per nucleon or more

Cooling by evaporation.

hot collision zone

fast fragment

projectile
target

hot fragment

fast cool exotics

fast secondary 
‘cocktail’ beam



Reaction timescales – in surface grazing collisions

b

z

For 100 and 250 MeV/u incident energy:
NSCL                                   RIBF, FRIB        GSI 



The Schrodinger equation – differential approach

So, using usual notation

and for scattering states



S-matrix - ingoing and outgoing waves amplitudes

0



Semi-classical approaches – many L-values

Lk,

b

L
1

absorption

transmission

0

large k – e.g. nucleus-nucleus



Point particle scattering – cross sections

All cross sections, etc. can be computed from the S-matrix, 
in either the partial wave or the semi-classical (impact 
parameter) representations, for example (spinless case):

and where (cylindrical coordinates)

etc.

b
z



Eikonal approximation: for point particles (1)

Approximate (semi-classical) scattering solution of   

assume

valid when  high energy 
Key steps are: (1) the distorted wave function is written 

all effects due to U(r),
modulation function

(2) Substituting this product form in the Schrodinger Eq.

small wavelength



Eikonal approximation: point neutral particles (2)

1D integral over a straight
line path through U at the
impact parameter b

The conditions  imply that 

and choosing the z-axis in the beam direction 

with solution

b r
z

Slow spatial variation cf. k

phase that develops with z



Eikonal approximation: point neutral particles (3)

So, after the interaction and as z

Eikonal approximation to the
S-matrix S(b)

S(b) is amplitude of the forward 
going outgoing waves from the 
scattering at impact parameter b

theory generalises simply to few-body projectiles
Moreover, the structure of the 

b r
z



Eikonal approximation: point particles - summary

b

z limit of range of 
finite ranged 
potential



Eikonal approximation: several particles (preview)

Total interaction energy

with composite objects we will 
get products of the S-matrices

b1

zb2



Point particle – the differential cross section

Using the standard result from scattering theory, the elastic 
scattering amplitude is

with                                             is the momentum transfer. 
Consistent with the earlier high energy (forward scattering) 
approximation



Bessel 
function

Point particles – the differential cross section
So, the elastic scattering amplitude

Performing the z- and azimuthal  integrals 

is approximated by



Point particle – the Coulomb interaction
Treatment of the Coulomb interaction (as in partial wave 
analysis) requires a little care. Problem is, eikonal phase 
integral due to Coulomb potential diverges logarithmically.

Must ‘screen’ the potential at 
some large screening radius 

overall unobservable
screening phase

usual Coulomb 
(Rutherford) point 
charge amplitude

nuclear scattering in the presence 
of Coulomb

See e.g. J.M. Brooke, J.S. Al-Khalili, 
and J.A. Tostevin PRC 59 1560 

nuclear 
phase

Due to finite charge 
distribution 



Accuracy of the eikonal S(b) and cross sections

J.M. Brooke, J.S. Al-Khalili, and J.A. Tostevin PRC 59 1560 



Accuracy of the eikonal S(b) and cross sections

J.M. Brooke, J.S. Al-Khalili, and J.A. Tostevin PRC 59 1560 



Non-point particles: such as in knockout reactions 

[fast] exotic
projectile
(v/c > 0.4)

9Be

c

P.G. Hansen and J.A. Tostevin, Ann Rev Nucl Part Sci 53 (2003) 219

Elastic scattering of composite nuclei or description of 
one or two-nucleon removal – at ~100 MeV/nucleon

How to describe? - what can we learn from these?



Adiabatic (sudden) approximations in physics
Can often identify motion as being of  high energy/fast and  
low energy/slow in different degrees of freedom

Fast neutron scattering 
from a rotational nucleus

‘fast’ ‘slow’

E0, |0
E1, |1

E2, |2
E3, |3

Fix , calculate scattering 
amplitude f(, ) for each 
(fixed) orientation  of the 
rotational nucleus

Fix , calculate scattering 
amplitude f(, ) for each 
(fixed) orientation  of the 
rotational nucleus

fixing the orientation, we 
assume moment of inertia 
  and so states of the 
rotational spectrum are 
assumed degenerate

fixing the orientation, we 
assume moment of inertia 
  and so states of the 
rotational spectrum are 
assumed degenerate

E0

Transition amplitudes  f () =f(, )Transition amplitudes  f () =f(, )



Freeze internal co-ordinate r, then scatter c+v from target
and compute f(,r) for all required fixed values of r

Physical amplitude for e.g. breakup to state          is then, 

fk () =kf(, r)0r

Few-body projectiles – the adiabatic model

v
r

c

‘fast’‘slow’ R

0

k

0

Full spectrum of
Hp is assumed
degenerate with
the ground state

)(rk

)(rk

Achieved trivially by replacing  Hp  0 in the 
Schrödinger equation – the assumed degeneracy



Adiabatic approximation: its implementation

with

r

1
R

2

The adiabatic approximation replaces

where                           is the projectile incident energy in the 
cm frame and r is a parameter in this adiabatic 3-body eqn.



Adiabatic approximation - time perspective
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The time-dependent equation is
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and can be written
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Adiabatic
equation

2

requires

Adiabatic step
assumes
r(t)  r(0)=r=fixed
or =1 for the
collision time tcoll

Adiabatic step
assumes
r(t)  r(0)=r=fixed
or =1 for the
collision time tcoll



Reaction timescales – in surface grazing collisions

b

z

For 100 and 250 MeV/u incident energy:
NSCL                                   RIBF, FRIB        GSI 



Eikonal approximation: for composite particles (1)
Having made the adiabatic approximation, for each fixed r

As before, with this product form, the equation for  is

where

One now assumes, as before, a modulating function,

and, as

in which r is just a parameter (a frozen value) 



Eikonal approximation: for composite particles (2)

1D integrals over straight line 
paths through U’s at impact 
parameters b of the 2 bodies

With the z-axis in the beam direction 

with solution

2

1

b1
b2b

at fixed r
adiabatic

So, after the collision, as Z  



Eikonal approximation: for composite particles (3)

Total interaction energy

with composite systems: get 
products of the S-matrices

b1

zb2



Few-body eikonal model amplitudes
So, after the collision, as Z )(bS )(bS)( vvcc Rr,

 )(e )](bS )(bS[),( 0vvcc
Eik rRr RK
K  i

with Sc and Sv the eikonal approximations to the S-matrices 
for independent scattering of c and v by the target - dynamics

c

v

bv
bcb

at fixed r
adiabatic

So, elastic S-matrix, Sp(b) for 
the scattering of the projectile, 
at an impact parameter b - i.e. 
the amplitude that it emerges 
in state           is )(0 r

 |  )(bS )(bS  |(b)S 0vvcc0p r

amplitude that c,v survive
interaction with fixed bc and bv

averaged over position
probabilities of c and v



Eikonal theory - dynamics and structure  separation

 |  )(bS )(bS  |(b)S vvcc   
scattering

structure

Independent scattering information of c and v from target

Use the best available few- or many-body wave functions
More generally,

 | )(bS  ...... )(bS )(bS  |(b)S nn2211  

for any choice of 1,2 ,3, ….. n clusters or nucleons.

c

v
Sv

Sc

α

These S are for a fixed projectile c.m. impact parameter 
and observables will be integrals over all b



Practical calculations for several-body projectiles

J.A. Tostevin et al.  PRC 56, R2929 (1997) 

b



Use an old friend – and make some new ones
bound (bound states solver – see bound.outline)

eikonal_s (for eikonal S-matrix from a specified 
interaction potential - eikonal_s.outline)

glauber (elastic scattering calculation from a specified
eikonal S-matrix - glauber.outline) 

knockout (composite two-body projectile S-matrix from a 
bound state wave function and component S-
matrices – knockout.outline)

You can now calculate bound states (bound) and eikonal 
S-matrices (eikonal_s) and can calculate this composite 
S-matrix (using knockout). The elastic scattering of c, v or 
the composite can then be calculated (using glauber). So 
you can now calculate the elastic scattering of the neutron, 
10Be, and the composite halo system 11Be



This first session discussed:

Approximate solutions of the Schrodinger equation for 
states of two, three or more bodies at ‘high energies’
using the eikonal (scattering is forward-dominated) and 
adiabatic approximations for the reaction dynamics.

Highlighted the importance of the eikonal S-matrices, 
functions of the impact parameters of the projectile, or   
components of the projectile, in this formulation of the 
reaction and scattering of the interacting systems.

Discussed examples to assess the accuracy of the 
eikonal approximation with the projectile energy, and 
clarified how both point particle and composite projectile 
scattering can be  calculated using these methods.



End of part 1


