Microscopic folding potentials for inelastic reactions
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We investigate the use of effective nucleon-nucleon (NN) interactions to describe inelastic scat-
tering reactions in a semi-microscopic coupled-channels (CC) formalism. The potentials needed for
the calculation of inelastic cross sections are constructed by folding the NN interaction with transi-
tion densities calculated in an appropriate structure model. Under certain assumptions (e.g. rotor
model), these transition densities can be related to the derivative of the ground state density. This
approximation is tested for proton inelastic scattering on '°Be.
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I. INTRODUCTION

One of the key ingredients in nuclear reactions studied
within the optical model (OM) or the coupled-channels
formalism is the correct evaluation of the projectile-
target interaction [I]. This implies the choice of a certain
strength and shape of the dependence with the relative
coordinate between particle and target, broadly known as
optical potentials and defined in terms of different optical
parameters. These parameters are usually fixed accord-
ing to the properties and sizes of the components of the
reaction, taken from the analysis of similar reactions with
nuclei with similar mass or charge, or directly from global
parameterizations like Perey and Perey [2], Hinterberger
et al. [3], Perrin et al. [], and Dachnick et al. [5] One
may also adjust these parameters to reproduce the exper-
imental cross section and then infer physical properties
of the constituents.

An alternative to the problem of playing with so many
parameters is the use of folding potentials [6]. It is pos-
sible to obtain nucleon-nucleus and nucleus-nucleus po-
tentials by folding an appropriate effective NN interac-
tion with the corresponding densities. This procedure
is widely used for elastic scattering [7HI]. We can also
find examples of folding potentials in inelastic scatter-
ing [I0H13] and even as part of more complex continuum-
discretized couple-channels (CDCC) calculations [T4HIg].
For elastic potentials only the central density for the
ground state of the nucleus is needed whereas, for inelas-
tic scattering, the calculation involves the wave function
for the excited state and the transition density between
this state and the ground state.

This fact increases the difficulty of the calculation
and discourages its general use by the community. On
the other hand, new developments in reactions with
halo nuclei concerning core excitations and their impli-
cations [19] rely on a good description of the inelastic
scattering of the core with the target. The usual option
in this case is to assume the core to be a rotor or a vi-
brator [20], although again we should play with a large
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amount of parameters. In this case, it will be useful as
well to relate the results of using transition densities with
this easier and more common prescription. Therefore,
it is our aim to study the use of folding potentials for
these purposes as well as possible simplifications like the
particle-rotor prescription. We hope it will lead to spread
the use of this tool.

In this work, we study the use of folding potentials
in the elastic and inelastic scattering of protons on °Be
at 59 MeV using the NN interaction of Jeukenne, Leje-
une and Mahaux [21] and the densities calculated micro-
scopically using the antisymmetrized molecular dynamics
(AMD) method [22] kindly supplied by Prof. Y. Kanada-
En’yo. The cross sections will be calculated within the
CC formalism and compared with the available experi-
mental data [23] 24].

The paper is structured as follows. In Sec [l we ex-
plain how to construct the folding potential from transi-
tion densities using a density dependent NN interaction.
In Sec. [lT]] we apply the method to proton elastic and
inelastic scattering on 1°Be. Finally, in Sec. [[V|the main
conclusions of this work are summarized.

II. FOLDING MODEL FOR THE
PROJECTILE-TARGET INTERACTION

We will perform CC calculations for both elastic and
inelastic cross sections of a proton on a nucleus. In order
to generate the corresponding potential, we start from
the general convolution of an effective in-medium NN in-
teraction with the density of the projectile:
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where v,,,, is the effective NN interaction and p(r”, €) the
density operator, defined as usual as

p7.€) =D o —7i) )
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This is conveniently expanded in multipoles as

Zm E)Yau(r). (3)

Note that, in the spherical case, p(r’) = p(r'), and V,e(r)
results a central potential, so it provides only the A = 0
term in a multipole expansion of the potential. In this
case, p(r_; , &) contains also non-central terms that will give
rise to transition potentials with A > 0. For the inelastic
cross section, we will need at least a term with A = 2 since
we consider an excitation between a 0% ground state and
a 27 excited state of the target.

One requires the reduced matrix elements of the V.
interaction between different states of the projectile in-
cluded in the calculation. In the folding scheme, these
will be related to the reduced matrix elements of the
density operator, i.e.

(Iv|p(P)I'V') = (¢1,(€ Zsr—n )r(€))
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where px y—p/(r) correspond to the reduced matrix ele-
ments

(I'llpAll T) - (5)

Our convention for reduced matrix elements is that of
Brink and Satchler [25] so that the inverse densities are
related as 2I' + 1(I'||pAl|I) = V21 4+ 1{I||ps||I’).

The density operator can be analogously defined for
protons and neutrons (p® and p(™), in which case the
sum in Eq. runs over protons or neutrons, respec-
tively. The corresponding monopole transition densities
are normalized as

P11 (1) =

/ o)1 () Yoo (F)dF = Z, (6)
[ oo Yootirar = . @)

For the proton case, the multipole terms are constrained
by the electric transition probabilities, i.e.:

2
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In this work, the required transition densities are
obtained from antisymmetrized molecular dynamics
(AMD) [26, 27] calculations. AMD wavefunctions are
formed from Slater determinants of single-nucleon Gaus-
sian wavefunctions. The energy of the system is calcu-
lated considering effective nucleon-nucleon interactions.
The ground state is obtained with a variational method
and the excited states, applying the same method for an
AMD function orthogonal to those with lower energy. Al-
though no initial cluster structure is assumed, it has been

2l' +1 ,

BEAI = T) =5 e

shown that, for Be isotopes, the structure of the low-lying
states obtained within this method can be described as
two alpha clusters with the remaining neutrons orbiting
around the two alphas as proposed by Von Oertzen [28].
Actually, the method has been proved to be very useful
to understand the level structure and deformation of Be
and B isotopes [22].

Following [6], the central part of the effective nucleon-
nucleon interaction (v,y) is decomposed in terms of the
total spin (S) and isospin (7') of the colliding pair but,
for simplicity, only the S = 0 terms are considered,

-

Vnn(8) = voo(s) + vo1(s)7" - 7, (9)

where vgr are the expansion terms and 7 is the isospin
operator. Attending to the isospin dependence, the
voo and vg; terms are called, respectively, isoscalar and
isovectorial parts. The radial forms vor(s) are taken from
the work of Jeukenne-Lejeune-Mahaux (JLM) [21]

vor (s, p, E) = AV (p, B) (t,/7) ™ exp(—s2/2)
+idoWr(p, E)(twv/7) "2 exp(—s*/t2,). (10)

The strengths of the real and imaginary potentials, Vi
and Wp, depend on the density p, and the nucleon-
nucleon relative energy F. This energy is corrected by
an estimation of the Coulomb energy [2I]. On the other
hand, normalization factors, A, .,, and the effective range
of the Gaussian form factor, t, 4, are adjustable parame-
ters with typical values between 0.8 and 1.2 for A, ,,, and
between 1.2 and 1.4 for ¢, ,,. This interaction has been
found to reproduce satisfactorily the elastic and inelas-
tic experimental cross sections in the intermediate energy
region for light halo nuclei [12], [13].

In order to evaluate eq. we should also expand the
interaction in multipoles as we did for the density:

var (7)- Yo(r').  (11)
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In the test cases considered in this work, the projec-
tile is a proton, in which case the resulting potential can
be expressed in terms of the corresponding proton and
neutron transition densities as [12]:

@O = [ rar (o)
[P,\ 10 (1) + AI%I/( )}
W)
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Note that, if the projectile is a neutron, the sign of the
isovectorial term changes.
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FIG. 1. Angular distribution of the elastic cross section of
protons on 1°Be at 59 MeV for the three sets of potentials
described in the text. We compare with the data from [24]

III. APPLICATION TO INELASTIC
SCATTERING

We perform a CC calculation for the elastic and in-
elastic scattering of protons on °Be at 59 MeV using
the potentials calculated as described in the previous
section. The states considered for the inelastic scat-
tering are the 0% ground state and the 2% first excited
state of '°Be. AMD densities for °Be from Y. Kanada-
En’yo [20] together with the JLM interaction [2I] are
used to construct the corresponding projectile-target po-
tentials. Concerning the parameters involved in the in-
teraction, we use t,,, = 1.2 as suggested in the original
work [2I] and a standard normalization for the real and
imaginary part, which is A, = 1.0 and A\, = 0.8 [24].
Different parameters as well as different normalizations
for real and imaginary parts are used in previous works
for the same reactions [I3] 24] in order to fit the data.
However, our aim is to check how good is the agreement
with the data for standard values of the parameters, so
that we will keep these values.

For the numerical calculation of the potential we have
developed the program MIFOLD. During this develop-
ment it has been a great help to compare with the re-
sults of the code MINC from Prof. M. Takashina [29].
For the CC calculation we used the code FRESCO [30].
The results are shown in Figs. [I]and [2| for the elastic and
inelastic cross section respectively (solid lines). In both
cases there is a good agreement with the data.

In order to simplify the present calculation, we will
consider a situation where only the ground state density
is available. In this case, we can estimate the transition
density according to rotor or vibrator models [20] which
are reasonable approximations for many nuclei with a
first excited state 2. Within this model, the transition
densities are considered to be proportional to the central
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FIG. 2. Angular distribution of the inelastic cross section of
protons on °Be at 59 MeV for the three sets of potentials
described in the text. We compare with the data from [23]

potential:

de,(]JrH(H
b

P20+ 2+ = <2+||‘§2H0+> dr

(13)
where the matrix element (2F]]5,]|0) is related, within
the rotor model, to the deformation length as:

(6T = (' KAO|TK )3y = (I'KNOITK) AR, (14)

where K is the projection of the angular momentum
along the symmetry axis that characterizes the rotational
band, so that for 0t — 2% transition we have K = 0.

Comparing this approximated p; ¢+_,o+ With the cor-
responding AMD density we find a deformation length
of o = 1.90 fm, larger than the usual values in particle-
rotor calculations, e. g. d2 = 1.66 fm [31], B2]. Using
this density we perform again the calculation of the elas-
tic and inelastic cross sections (dashed and dotted lines
in Figs. [T[] and [ for the calculated deformed length and
the one used in [3I), B2] respectively). Both deforma-
tion lengths lead to reasonable results since larger dif-
ferences can be found altering the values of the JLM in-
teraction [I3]. The two values are also consistent with
the deformation length obtained in [23] by fitting the
experimental inelastic data with different particle-rotor
potentials, §3 = 1.80 £ 0.25 fm. Larger values are found
in previous analysis of inelastic cross sections at lower
energies, 1.84 —1.99 fm [33], but still consistent with the
calculated deformed length d2 = 1.90 fm.

IV. SUMMARY AND CONCLUSIONS

We have shown how to construct folding potentials for
the elastic and inelastic scattering of nucleons on a nu-
cleus. We have applied this method to the case of protons



on '°Be at 59 MeV considering the ground state and the
first excited state of this nucleus. Using the JLM effec-
tive NN interaction and the AMD densities for 1°Be, we
obtain a good agreement with the available data.

In order to avoid the difficulty of computing transi-
tion densities for the excited state, we have repeated
the calculations using only the central density and its
derivative following the prescription of collective mod-
els. In this case, the deformation length is a free pa-
rameter that we can set by comparing with the original
transition density. This gives a value of o = 1.90 fm,
larger than the values previously used for particle-rotor
calculations, d5 = 1.66 fm, but consistent with the value
obtained from previous analyses of inelastic scattering
experiments [23] [33]. Nevertheless, with the three sets
of potentials, using the original transition density and
these two values of § multiplied times the derivative of
the central density, similar cross sections are obtained,
all of them consistent with the data.

Therefore, we conclude that through the derivative of
the density it is possible to obtain reasonable results for
the inelastic scattering. The analysis of the data can
also give a preliminary value for the nuclear deforma-

tion for those cases where only the ground state is well
known. The only ingredient should be a good description
of the ground state density as obtained here thanks to the
AMD calculations by Prof. Y. Kanada-En’yo. This cen-
tral density can be obtained by a variety of models, such
as Hartree-Fock or beyond-mean-field approaches. How-
ever, it is obvious that, for those nuclei where we can
obtain them, the best option is to perform the analysis
using the transition densities together with an appropri-
ate NN interaction like JLM.
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