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We investigate applicability of the time-dependent Hartree-Fock (TDHF) theory to reactions at
relatively high incident energy (∼100 MeV/A). To this end, we consider nucleon transfer processes in
grazing reaction at intermediate energies in 24O+16O system. To calculate reaction probabilities for
specific transfer channels, we use a particle number projection method which was recently proposed
by C. Simenel [Phys. Rev. Lett. 105, 192701 (2010)]. Applying the particle number projection
method, we also calculate excitation energy of a produced fragment in each transfer channel. From
the calculation, we find that we can calculate grazing reaction up to around 100 MeV/A without
numerical instability. However, in the case of incident energy of 200 MeV/A, there appear substantial
problems. Energy dependences of the transfer probabilities and the excitation energies of produced
fragments will be presented.

I. INTRODUCTION

Time-dependent Hartree-Fock (TDHF) theory is a mi-
croscopic theory for nuclear dynamics and has been suc-
cessful to describe giant resonances and heavy-ion re-
actions. The theory of TDHF was first proposed by
P.A.M. Dirac in 1930 [1] and its applications to nuclear
collision dynamics started in the 1970s [2]. Since then,
continuous efforts have been devoted for improving the
method and extending applications (for a recent review,
see Ref. [3]).
The TDHF theory enables us to describe heavy-ion col-

lisions microscopically from nucleons’ degrees of freedom
in a self-consistent manner. Since parameters included in
the effective interaction utilized in the TDHF calculation
are determined to reproduce nuclear properties in a wide
mass region, there is no adjustable parameter specific to
the reaction dynamics. Nowadays, three-dimensional cal-
culations with full Skyrme functionals including time-odd
components with promising predictive power are becom-
ing feasible [4]. Thus, the TDHF theory may be consid-
ered to be useful as a means to search for the preferable
condition (projectile, target, and incident energy) to pro-
duce objective unstable nuclei far from the stability line.
However, since a many-body wave function in the

TDHF theory is assumed to be a single Slater-
determinant at all times, correlation effects beyond the
mean-field level, such as nucleon-nucleon collisions and
pairing correlations, are not taken into account in its
framework. As increasing the incident energy, the mean
free path becomes shorter than a diameter of a nucleus
and the effect of nucleon-nucleon collisions becomes im-
portant. May be due to this fact, applications of the

∗ sekizawa@nucl.ph.tsukuba.ac.jp
† j.tostevin@surrey.ac.uk
‡ yabana@nucl.ph.tsukuba.ac.jp

TDHF theory have been limited to reactions at relatively
low incident energies (≲ 10 MeV/A).

Nevertheless we noticed the above mentioned draw-
back of the framework, in the project work, we inves-
tigate nuclear reactions at relatively high incident ener-
gies (∼100 MeV/A) employing the TDHF theory. The
main points at issue are the following: (i) Is there any
numerical/computational difficulty to perform a TDHF
calculation at such a relatively high incident energy of
around 100 MeV/A? (ii) If not, is it possible to describe
reasonably a grazing reaction at the intermediate energy
in the framework of the TDHF theory? The main goal
of this work is to clarify how the TDHF theory works for
reactions at such an intermediate energy.

To this end, we performed TDHF calculations for graz-
ing reactions at several incident energies in 24O+16O sys-
tem. Because the projectile 24O contains additional eight
neutrons compared to the target 16O, transfer of neutrons
(protons) from 24O to 16O (vise versa) is expected to oc-
cur. To extract transfer probabilities from the TDHF
wave function after the collision, we use a particle num-
ber projection method which was recently proposed by
C. Simenel [5]. By applying the particle number pro-
jection method, we also calculate excitation energy of
produced fragment in each transfer channel. Compar-
ing results of the TDHF calculation at different incident
energies, numerical accuracy of the calculation will be
discussed.

The construction of this paper is as follows. In Sec-
tion II, we describe the main formalisms to analyze the
grazing reaction in the TDHF theory. In Section III, we
present results of our TDHF calculations for grazing reac-
tions of 24O+16O. In Section IV, a summary and a future
prospect will be presented.
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II. FORMULATION

A. Nucleon transfer processes in the TDHF theory

First, let us explain a situation which we consider now.
We consider a collision of two nuclei described by the
TDHF theory. The projectile is composed of NP nucle-
ons and the target is composed of NT nucleons. The
total number of nucleons is N = NP + NT. In the
TDHF calculation, a time evolution of single-particle or-
bitals, ϕi(r, σ, t) (i = 1, · · · , N), is calculated where r
and σ denote the spatial and the spin coordinates, re-
spectively. The total wave function is expressed as the
Slater-determinant composed of the orbitals:

Φ(x1, · · · , xN , t) =
1√
N !

det
{
ϕi(xj , t)

}
, (1)

where x denotes a set of the spatial and the spin co-
ordinates, x ≡ (r, σ). For simplicity, we first consider
a many-body system composed of identical fermions ne-
glecting the isospin degrees of freedom. In Sec. II D, we
discuss a projection method for actual nuclei composed
of two kinds of fermions (neutrons and protons) to an-
alyze excitation energy of produced fragments after the
collision.
Before the collision, two nuclei are separated spatially.

We divide the whole space into two, the projectile re-
gion, V i

P, and the target region, V i
T. After the collision,

we assume that there appear two nuclei, a projectile-like
fragment (PLF) and a target-like fragment (TLF). We
ignore channels in which nuclei are separated into more
than two fragments after the collision. We again intro-
duce a division of the whole space into two, the projectile

region, V f
P , which includes the PLF, and the target re-

gion, V f
T , which includes the TLF.

We define the number operator of each spatial region
as

N̂τ =

∫
τ

dr
N∑
i=1

δ(r − ri) =
N∑
i=1

Θτ (ri), (2)

where τ specifies the spatial region either V
i(f)
P or V

i(f)
T .

We introduce the space division function, Θτ (r), defined
as

Θτ (r) =

{
1 for r ∈ τ
0 for r /∈ τ

. (3)

The sum of the two operators, N̂
V

i(f)
P

and N̂
V

i(f)
T

, is the

number operator of the whole space, N̂ = N̂V i
P
+ N̂V i

T

= N̂V f
P
+ N̂V f

T
. In ordinary TDHF calculations, an initial

wave function is the direct product of the ground state
wave functions of two nuclei boosted with the relative ve-
locity. The single-particle orbitals, ϕi(x, t), are localized
in one of the spatial regions, V i

P or V i
T, at the initial stage

of the calculation. Therefore, the initial wave function
is the eigenstate of both operators, N̂V i

P
and N̂V i

T
, with

eigenvalues, NP and NT, respectively. At the final stage
of the calculation after the collision, each single-particle

orbital extends spatially to both spatial regions of V f
P

and V f
T . Due to this fact, the Slater determinant at the

final stage is not an eigenstate of the number operators,
N̂V f

P
and N̂V f

T
, but a superposition of states with differ-

ent particle number distributions. We can then calculate
probabilities for certain particle number distributions at
the final stage of calculation.

B. Number projection operator

In our paper [4], we used the particle number projec-
tion method which was recently proposed by C. Simenel
[5]. In the method, the probability that n nucleons are

in the spatial region V f
P and N − n nucleons are in the

spatial region V f
T can be calculated as follows. Let us

denote a many-body wave function at the final stage of
the calculation, at time t = tf , as

Ψ(x1, · · · , xN ) =
1√
N !

det{ψi(xj)}, (4)

and omit the time index, tf . Here and hereafter, we also
omit the suffix f from two spatial regions at the final

stage of the calculation, V f
P and V f

T . We use the particle
number projection operator given by

P̂n =
1

2π

∫ 2π

0

dθ ei(n−N̂VP
)θ. (5)

This operator extracts a component of wave function in
which an expectation value of the number operator in the
spatial region VP equals to n. By taking an expectation
value of the particle number projection operator, Eq. (5),
we can calculate the probability that n nucleons are in
the spatial region VP andN−n nucleons are in the spatial
region VT, as follows:

Pn ≡ ⟨Ψ| P̂n |Ψ⟩

=
1

2π

∫ 2π

0

dθ einθ det
{⟨
ψi

∣∣ψj

⟩
VT

+ e−iθ
⟨
ψi

∣∣ψj

⟩
VP

}
,

(6)

where ⟨ψi|ψj⟩τ ≡
∑

σ

∫
drψ∗

i (r, σ)ψj(r, σ) denotes an
overlap integral between two orbitals ψi(x) and ψj(x)
in the spatial region τ = VP or VT. From the probability
Pn, we may obtain nucleon transfer probabilities. For
example, the probability of n-particle transfer from the
projectile to the target is given by PNP−n.

C. Expectation value in particle number projected
states

We next discuss how to calculate expectation values of
any operator by particle number projected states. In our
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paper [4], we showed that the TDHF theory may describe
the multinucleon transfer cross sections in a quality com-
parable to existing direct reaction theories. Then, one
may be interested in not only inclusive quantities inte-
grated over the impact parameter but also more exclu-
sive quantities associated with each impact parameter in
each transfer channel.
Let us consider an expectation value of an arbitrary

operator, Ô, by a particle number projected state. We
may calculate the expectation value of the operator Ô
by a particle number projected state in which n nucleons
are included in the spatial region VP after the collision
by applying the particle number projection operator, as
follows:

On ≡ ⟨Ψ| ÔP̂n |Ψ⟩
⟨Ψ| P̂n |Ψ⟩

=
1

2πPn

∫ 2π

0

dθ einθ ⟨Ψ| Ôe−iN̂VP
θ |Ψ⟩

=
1

2πPn

∫ 2π

0

dθ einθ ⟨Ψ| Ô |Ψ(θ)⟩ , (7)

where Ψ(θ) denotes a Slater determinant composed of
single-particle wave functions whose component in the
spacial region VP is multiplied by a phase factor e−iθ. It
can be expressed as

Ψ(x1, · · · , xN , θ) =
1√
N !

det
{
ψi(xj , θ)

}
(8)

ψi(x, θ) =
(
ΘVT(r) + e−iθΘVP(r)

)
ψi(x). (9)

Because of the multiplication of the phase factor e−iθ,
the single-particle orbitals, ψi(x) and ψi(x, θ), are no
longer orthonormal to each other, i.e. ⟨ψi|ψj(θ)⟩ ≠ δij .
We can calculate transitional matrix elements between
two Slater-determinants composed of different kinds of
orbitals which are non-orthonormal to each other [6].
Eq. (7) can be calculated as

On =
1

2πPn

∫ 2π

0

dθ einθ detB(θ)
⟨
Ψ
∣∣Ô∣∣Ψ̃(θ)

⟩
, (10)

where B(θ) denotes a N -dimensional matrix having ma-

trix elements of ⟨ψi|ψj(θ)⟩ on i-th row, j-th column. Ψ̃(θ)
denotes a Slater-determinant composed of transformed
single-particle wave functions which are orthonormal to
ψi, i.e.

⟨
ψi

∣∣ψ̃j(θ)
⟩
= δij , which is defined as

Ψ̃(x1, · · · , xN , θ) =
1√
N !

det
{
ψ̃i(xj , θ)

}
(11)

ψ̃i(x, θ) =
N∑

k=1

ψk(x, θ)
(
B(θ)

)−1

ki
. (12)

Since the two Slater determinants, Ψ and Ψ̃(θ), are com-
posed of biorthonomal single-particle wave functions, we
can calculate the transition matrix element between the
two Slater-determinants,

⟨
Ψ
∣∣Ô∣∣Ψ̃(θ)

⟩
, in a usual way. In

principle, we can calculate an expectation value of any
operators by particle number projected states by using
Eqs. (10-12).

D. Excitation energy of each transfer channel

In this project work, the formulas described in the pre-
vious subsection, Eqs. (10-12), are applied to evaluate ex-
citation energy of produced fragment after the collision.
Here, we explain our approach to evaluate the excitation
energy of produced fragment in each transfer channel [7].
It can be divided into the following three procedures: (i)
Remove kinetic energy associated with a translational rel-
ative motion of center-of-masses of produced fragments.
(ii) Calculate internal energy of the fragments apply-
ing the particle number projection method described in
Sec. II C. (iii) Evaluate excitation energy by subtract-
ing the ground state energy of a nucleus with the same
neutron and proton numbers as the particle number pro-
jected state.

Step (i): To calculate excitation energy of the pro-
duced fragment, we need to evaluate internal energy of
each fragment with a certain number of nucleons. Be-
cause, in the TDHF theory, states in different transfer
channels feel a single mean-field potential with a cer-
tain relative velocity, it is not at all obvious that how
to remove kinetic energy of center-of-mass relative mo-
tion from total energy of each particle number projected
state. To avoid this problem, we first “stop” the trans-
lational relative motion of the fragments by multiplying
two plane waves e−iKPLF·r to the wave function in the
spatial region VP and e−iKTLF·r to the wave function in
the spatial region VT. Denoting the mass and coordi-
nate of the PLF at the final stage of the calculation as
MPLF and RPLF(tf ), respectively, the wave vector of the

PLF is evaluated as KPLF = MPLFṘPLF(tf )/ℏ, where
ṘPLF(tf ) ≡

(
RPLF(tf +∆t)−RPLF(tf −∆t)

)
/2∆t, and

the similar formula folds for the TLF. In this way, we re-
move the kinetic energy of center-of-mass translational
motion of the produced fragments before the particle
number projection procedure performed.

Step (ii): Up to now, we have developed formulas for
a system composed of identical fermions. Let us con-
sider the case of actual nuclei composed of two kinds
of fermions (neutrons and protons). To calculate in-
ternal energy of the stopped fragment by the Step (i),
we apply formulas of Eqs. (10-12). By taking the ar-
bitrary operator as a total Hamiltonian of the system,
Ô = Ĥ =

∑
i t̂i +

∑
i<j v̂ij , we may evaluate internal

energy of each particle number projected state. We note
that, in the case of actual nuclei, we have to achieve the
projection calculation for both neutrons and protons. We
denote the particle number projection operator onto a n-

particle state for neutrons as P̂
(n)
n and that for protons

as P̂
(p)
n . We use notation of the phase factor in the pro-

jection operator, θ for neutrons and φ for protons. If
we use the Skyrme-like contact type interaction, we may
obtain the following expression for internal energy of the
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stopped fragments:

En,z =
⟨Ψ| ĤP̂ (n)

n P̂
(p)
z |Ψ⟩

⟨Ψ| P̂ (n)
n P̂

(z)
z |Ψ⟩

=
1

(2π)2PnPz

∫ 2π

0

dθ

∫ 2π

0

dφ ei(nθ+zφ) detB(θ, φ)

×
⟨
Ψ
∣∣Ĥ∣∣Ψ̃(θ, φ)

⟩
=

1

(2π)2PnPz

∫ 2π

0

dθ

∫ 2π

0

dφ ei(nθ+zφ) detB(θ, φ)

×
(∫

VP

dr H̃(r, θ, φ) +

∫
VT

dr H̃(r, θ, φ)

)
≡ EPLF

n,z + ETLF
N−n,Z−z, (13)

where EPLF
n,z represents an internal energy of a produced

fragment in the spacial region VP containing n neutrons
and z protons. Here, N and Z denote the total num-
ber of neutrons and protons in the whole system, respec-
tively. In practice, we perform the two integrals over
phase factor θ and φ employing the trapezoidal rule dis-
cretizing the interval [0, 2π] into M equal grids. Because
the Hamiltonian density, H(r), contains mixtures of pro-
ton and neutron densities, e.g. ρ(r) = ρ(n)(r) + ρ(p)(r),
we need to calculate both integrals simultaneously or, in
other words, we need to calculate the Hamiltonian den-
sity H̃(r, θ, φ), M2 times. The center-of-mass correction
for kinetic energy of each fragment is simply taken into
account by replacing a coefficient of kinetic energy oper-
ator, T̂ =

∑
i p̂i/2m, from 1/2m to (1− 1/a)/2m where

a = n + z denotes the mass number of the fragment.
When we calculate the internal energy of the PLF (TLF),
Coulomb energy of the other fragment is subtracted.
Step (iii): We then evaluate the excitation energy of

the PLF fragment in the spacial region VP containing n
neutrons and z protons as

E∗
n,z = EPLF

n,z − Eg.s.
n,z , (14)

where Eg.s
n,z is ground state energy with n neutrons and

z protons. For the ground state energy Eg.s, we use ex-
perimental values reported by G. Audi et al. [8] when
available. When there is no available experimental data,
we use the ground state energy reported by M.V.Stoitsov
et al. employing Hartree-Fock-Bogoliubov theory with
the Skyrme SLy4 effective interaction calculated by us-
ing two-center harmonic oscillator basis functions [9]. We
note that, in the present work, the energy associated with
collective rotational motion of the produced fragment is
not removed from the energy, E∗

n,z, which should be dis-
tinguished from the internal excitation energy of the frag-
ment.

E. Numerical methods

We have developed our own computational code of the
TDHF theory for heavy-ion collisions extending the code

developed for the real-time linear response calculations
[10]. We employ a uniform spatial grid in the three-
dimensional Cartesian coordinate to represent single-
particle orbitals without any symmetry restrictions. The
grid spacing is taken to be 0.8 fm. We take a box size of
50× 40× 20 grid points (40 fm × 32 fm × 16 fm) for col-
lision calculations, where the reaction plane is taken to
be the xy-plane. The initial wave functions of projectile
and target nuclei are prepared in a box with 20× 20× 20
grid points. We use 11-points finite-difference formula
for the first and second derivatives. To calculate the time
evolution of single-particle orbitals, we use the Taylor ex-
pansion method of 4th order. The first-order predictor-
corrector step is adopted in the time evolution. The time
step is set to ∆t = 0.1 fm/c. To calculate the Coulomb
potential, we employ the Hockney’s method [11] in which
the Fourier transformation is achieved in the grid of two
times larger box than that utilized to express single-
particle orbitals.

III. RESULTS

In this section, we will show calculated results of
24O+16O reaction at incident energies of 800, 1600, 3200,
4800 MeV.
As for the energy density functional and potential, we

use the Skyrme functional including all time-odd terms
[12] except for the second derivative of the spin densities,
△s(n, p). All of the results reported here are calculated
using the Skyrme SLy5 parameter set [13]. This inter-
action has been utilized in the fully three-dimensional
TDHF calculations for heavy-ion collisions [14–16]. In
the ground state calculations, we find the ground states
of 16O and 24O are spherical.
We take the incident direction parallel to the x-axis

and the impact parameter vector parallel to the y-axis.
The reaction is specified by the incident energy and the
impact parameter. As an initial condition, the two col-
liding nuclei are placed with the distance 16 fm in the
x-direction. Before starting the TDHF calculation, we
assume the centers of the two colliding nuclei follow the
Rutherford trajectory. We stop time evolution calcula-
tions when two nuclei are separated by 16 fm.
To investigate grazing reactions, we choose the im-

pact parameter at which the same value of distance of
closest approach, d, is achieved at each incident en-
ergy. Such an impact parameter is given by b =√
d (d− (ZPZTe2)/Erel) where Erel is incident relative

energy. Reactions with the distance of closest approach

of d = R0(A
1/3
P + A

1/3
T ) for R0 = 1.0, 1.2, 1.5, 1.8 are

calculated. As an example, in Fig. 1, we show time de-
pendence of the relative distance between two center-of-
masses of the colliding nuclei, Rrel(t), in 24O+16O re-
action at several incident energies which give the same

distance of closest approach d = 1.5(A
1/3
P + A

1/3
T ). Red

solid, green dashed, blue dotted, and purple broken lines
represent a result at 800, 1600, 3200, and 4800 MeV,
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P ). Red

solid, green dashed, blue dotted, and purple broken lines rep-
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respectively. From the figure, we can see that the min-
ima of curves Rrel(t) which corresponds to the distance
of closest approach have almost the same value.

Before showing calculated results of physical quanti-
ties, let us show numerical accuracy in calculating graz-
ing reactions at intermediate energy by the TDHF the-
ory. Since, in the TDHF calculation, total number of
nucleons in the whole system and total energy of the sys-
tem are conserved during the time evolution, to check
how the conservation properties are kept during the time
evolution may provide information about the numerical
accuracy.
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Figure 2 shows difference in particle number from ini-
tial total number of nucleons, 40, during a time evo-
lution in 24O+16O reaction at several incident ener-
gies which give the same distance of closest approach

d = 1.5(A
1/3
P + A

1/3
P ). Red solid, green dashed, blue

dotted, and purple broken lines represent a result at 800,
1600, 3200, and 4800 MeV, respectively. Figure 2 shows
that the total number of nucleons is nicely conserved dur-
ing the time evolution. From the figure, we find that
the conservation property of total number of nucleons
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becomes less accurate as the incident energy increases.
The difference in total number of nucleons ∆N reaches
a value of 10−5 in the case of highest incident energy of
Elab = 4800 MeV (200 MeV/A).

In Fig. 3, we show energy variance from total energy at
the initial stage of the calculation during a time evolution
in 24O+16O reaction at several incident energies which

give the same distance of closest approach d = 1.5(A
1/3
P +

A
1/3
P ). Again, red solid, green dashed, blue dotted, and

purple broken lines represent a result at 800, 1600, 3200,
and 4800 MeV, respectively. As in the case of the total
number of nucleons shown in Fig. 2, the conservation
property becomes less accurate as the incident energy
increases. In particular, the energy variance ∆E reaches
a value of around 20 MeV in the case of Elab = 4800
MeV (200 MeV/A). I checked whether this conservation
property is improved by changing the time step ∆t to
0.01 fm/c. However, it turned out that the value ∆E
was almost independent from the value of ∆t. This fact
may indicate that the time evolution is no longer solved
precisely in the case of Elab = 4800 MeV. It may, to some
extent, be improved if we use more smaller mesh spacing
than ∆H = 0.8 fm, however, I still not checked it and
leaves it as a future task.

Next, in Fig. 4, we show total kinetic energy loss
(TKEL) as a function of the incident energy Elab. Red
pluses connected with solid lines, green crosses connected
with dashed lines, blue stars connected with dotted lines,
and purple open boxes connected with broken lines rep-
resent a result of a fixed value of distance of closest ap-

proach d = R0(A
1/3
P + A

1/3
T ) with R0 = 1.0, 1.2, 1.5,

and 1.8, respectively. From the figure, we find the TKEL
takes substantially large value, more than 300 MeV when
the incident energy becomes Elab = 4800 MeV (200
MeV/A). It would be considered as unphysical, since the
distance of closest approach d with R0 = 1.8 is around

9.7 fm which is larger than the sum of radius of the pro-
jectile and the target which should not result in such a
high momentum transfer. We should keep in mind this
unphysical deceleration when we calculate reactions at
intermediate energy by the TDHF theory. I should also
check whether this unphysical deceleration is removed if
we take more small mesh spacing.
We next consider the average number of transferred

nucleons. We denote the average number of nucleons in

the TLF as N
(q)
TLF (q = n for neutrons, p for protons),

which is calculated from the density distribution at the
final stage of the calculation,

N
(q)
TLF =

∫
aroundTLF

dr ρ(q)(r), (15)

where ρ(q)(r) is the density distribution of neutrons (q =
n) or protons (q = p). The spatial integration is achieved
over a sphere whose center coincides with the center-of-
mass of the TLF. The radius of the sphere is taken to be
8 fm. The average number of transferred nucleons from

the projectile to the target, N
(q)
tr , is given by

N
(q)
tr = N

(q)
TLF −N

(q)
T , (16)

where N
(q)
T denotes the initial number of neutrons (q =

n) or protons (q = p) in the target nucleus.
Figure 5 shows the average number of transferred neu-

trons (left) and protons (right) from the projectile to the
target as a function of incident energy Elab for several
values of the distance of closest approach, d. Red pluses
connected with solid lines, green crosses connected with
dashed lines, blue stars connected with dotted lines, and
purple open boxes connected with broken lines represent
a result of a fixed value of distance of closest approach

d = R0(A
1/3
P + A

1/3
T ) with R0 = 1.0, 1.2, 1.5, and 1.8,
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respectively. In the case of the lowest energy Elab = 800
MeV (∼33 MeV/A), we find neutrons are transferred
from 24O to 16O and protons are transferred from 16O
to 24O, the direction of charge equilibrium of the system.
As the incident energy increases, the average number of
transferred nucleons decreases. In the case of incident
energy of Elab = 3200 MeV (∼133 MeV/A), the number
of transferred nucleons are very small, on average. In
the case of Elab = 4800 MeV (200 MeV/A), both aver-
age number of transferred neutrons and protons become
negative. Since this value is almost independent from
the distance of closest approach, these nucleons might be
unphysically emitted to the continuum during the time
evolution.

Next, in Fig. 6, we show neutron (left column) and pro-
ton (right column) transfer probabilities from the projec-
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FIG. 6. Neutron (left column) and proton (right column)
transfer probabilities as functions of incident energy Elab.
The number of transferred nucleons are indicated as (±xq)
(−2 ≤ x ≤ +2, q = n for neutrons and q = p for pro-
tons). Red pluses connected with solid lines, green crosses
connected with dashed lines, blue stars connected with dot-
ted lines, and purple open boxes connected with broken lines
represent a result of a fixed value of distance of closest ap-

proach d = R0(A
1/3
P +A

1/3
T ) with R0 = 1.0, 1.2, 1.5, and 1.8,

respectively.

tile to the target for (−2), · · · , (+2) transfer channels as
functions of incident energy Elab. The plus (minus) sign
indicates an increase (decrease) of nucleons in the tar-
get nucleus. Red pluses connected with solid lines, green
crosses connected with dashed lines, blue stars connected
with dotted lines, and purple open boxes connected with
broken lines represent a result of a fixed value of distance

of closest approach d = R0(A
1/3
P + A

1/3
T ) with R0 = 1.0,

1.2, 1.5, and 1.8, respectively. We can see relatively large
values of probabilities in (+2n), (+1n), (−1p), and (−2p)
panels (except for (0n) and (0p) panels). These directions
of nucleon transfer are consistent with the observation in
the average number of nucleons shown in Fig. 5. In the
figure, we can see the probability for one neutron removal
shown in (−1n) panel which could not seen in the aver-
age number of nucleons shown in Fig. 5. In the case of
Elab = 4800 MeV, probabilities for one neutron removal
and one proton removal shown in (−1n) and (−1p) panels
becomes sizable. This comes from unphysical emission of
nucleons as shown in Fig. 5.

Figure 7 shows excitation energy of the TLF in spe-
cific transfer channels as a function of the incident en-
ergy Elab. The excitation energy of the TLF is evaluated
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FIG. 7. Excitation energy of the TLF in specific transfer
channels as a function of incident energy Elab. The number
of transferred nucleons from the target 16O is indicated as
(∆Z,∆N), where the plus (minus) sign corresponds to an in-
crease (decrease) of number of nucleons in the target. Red
pluses connected with solid lines, green crosses connected
with dashed lines, blue stars connected with dotted lines,
and purple open boxes connected with broken lines repre-
sent a result of a fixed value of distance of closest approach

d = R0(A
1/3
P +A

1/3
T ) with R0 = 1.0, 1.2, 1.5, and 1.8, respec-

tively.
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by using the projection procedure described in Sec. II D.
The number of transferred nucleons from the target 16O is
indicated as (∆Z,∆N), where the plus (minus) sign cor-
responds to an increase (decrease) of number of nucleons
in the target nucleus. Red pluses connected with solid
lines, green crosses connected with dashed lines, blue
stars connected with dotted lines, and purple open boxes
connected with broken lines represent a result of a fixed

value of distance of closest approach d = R0(A
1/3
P +A

1/3
T )

with R0 = 1.0, 1.2, 1.5, and 1.8, respectively. Looking at
(0p, 0n), (0p,−1n), and (−1p, 0n) panels (left column),
we find that produced fragments have low excitation en-
ergy, especially for R0 = 1.5 and 1.8 cases. On the
other hand, in the cases of (0p,+1n) and (+1p, 0n) (right
column), produced fragments are highly excited even if
the R0 value is 1.5 or 1.8. As the incident energy in-
creases, the excitation energy of produced fragments also
increases in the cases of (0p,+1n) and (+1p, 0n).
In this way, we can extract physical quantities from

particle number projected states by applying the method
described in Sec. II C and D.

IV. SUMMARY AND FUTURE PROSPECT

In this project work, we investigated that how the time-
dependent Hartree-Fock (TDHF) theory works for graz-
ing reaction at intermediate energy. We calculated graz-
ing reaction in 24O+16O system at incident energies of
800, 1600, 3200, and 4800 MeV. For each incident en-
ergy, we calculated reactions with fixed values of the dis-

tance of closest approach d = R0(A
1/3
P +A

1/3
T ) for the R0

values of 1.0, 1.2, 1.5, and 1.8. Using the particle num-
ber projection method which was recently proposed by
C. Simenel we calculated transfer probabilities form the
TDHF wave function after the collision. By applying the
projection method, we also calculated excitation energy
of produced fragment in specific transfer channels.
As increasing the incident energy, there appear some

unphysical behaviors in calculated quantities, energy con-
servation property, total kinetic energy loss (TKEL), and

average number of transferred nucleons. In the case
of incident energy of 200 MeV/A, the energy variance
from initial total energy of the system becomes around
20 MeV, and the TKEL becomes more than 200 MeV.
The average number of transferred nucleons from the pro-
jectile to the target, in this case, has a negative value for
both neutrons and protons indicating that some nucle-
ons were unphysically emitted to the continuum during
the time evolution. These unphysical behavior indicate
that the time evolution in the TDHF theory is no longer
solved accurately. We should calculate the same situa-
tion utilizing more small mesh spacing than that used
value of 0.8 fm.

Looking at the results of TDHF calculation, the re-
action dynamics was calculated without numerical in-
stability up to around 100 MeV/A. What we should
do next is to clarify how qualitatively/quantitatively the
TDHF theory describes such a reaction at incident en-
ergy of around 100 MeV/A. Since the TDHF theory dose
not contain effects of nucleon-nucleon collisions which ex-
pected to be important in reactions at such a relatively
high incident energy, the TDHF theory is expected to fail
to reproduce measured trends. However, because I think
that to realize the limit of application is important for
improving the method and for extending the application,
I will continue this work until we uncover the applica-
bility of the TDHF theory to reactions at relatively high
incident energy of around 100 MeV/A.
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