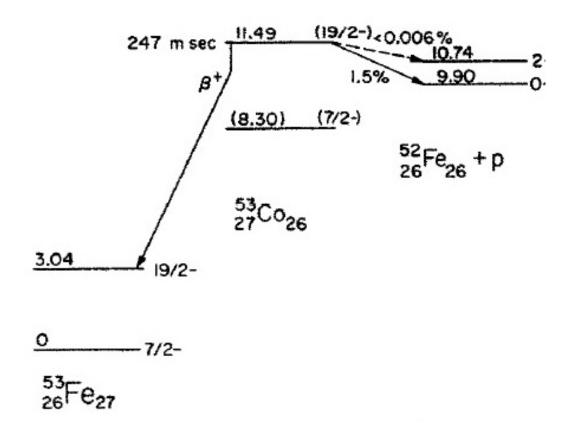


						75 ns	>200 ns	78 ms	199 ms	3.20 s	82 s	23 m	3
			23	or 3.8	p? β+?	p?	β ⁺ ? p ?	β ⁺ γ 2701; 1225; 2506; 2783	β ⁺ 7.7 γ 1112	β ⁺ 7.5 γ 1454; 1448; 40	β ⁺ 3.8 γ 1302; 878; 339; 465	β ⁺ 2.0; 3.9 γ1332; 1792; 826	8 ⁺ 1.2 y 283; 1186.
Ni 3.6934	Ni 48 ~2 ms ?	Ni 49 13 ms	Ni 50 12 ms	Ni 51 >200 ns	Ni 52 38 ms	Ni 53 -5 ms	Ni 54 104 ms	Ni 55 209 ms	Ni 56 6.075 d	Ni 57 36.0 h	Ni 58 68.0769	Ni 59 7.5 · 10 ⁴ a	N 26
	2p 1.35 ?	в+ вр 3.7	β+ βp	β+?	в ⁺ вр 1.34; 1.06	β ⁺ βρ 190	β ⁺ γ 937 9	β ⁺ 7.7 γ (2919; 2976; 3303)	ε; no β ⁺ γ 158; 812; 750; 480; 270	β ⁺ 0.8 γ 1378; 1920; 127	σ 4.6 σ _{n, α} <0.00003	ε; β ⁺ no γ; σ 77.7 σ _{n, α} 14; σ _{n, p} 2 σ _{abs} 92	σ 2 .9
Co 933200			Co 49 <35 ns	Co 50 44 ms	Co 51 <200 ns	Co 52	Co 53 247 ms 240 ms	Co 54	Co 55 17.54 h	Co 56 77.26 d	Co 57 271.79 d	Co 58 8.94 h 70.86 d	C
19			p?	в ⁺ вр 2.70; 2.00	β+ ?	8* 7 849; 1535; 7 849 1329; 7 7 1942	p1.56 p1.328	87.4.3 7.4.1 1130: p 7.3 1407 (2561)	β ⁺ 1.5 γ 931; 477; 1409	ε; β ⁺ 1.5 γ847; 1238; 2598; 1771; 1038	ε γ 122; 136; 14	iy (25) 5* 0.5; e" 7 140000 7 1900	a 20.7
e 45 75 ms	Fe 46 10.3 ms	Fe 47 21.6 ms	Fe 48 51 ms	Fe 49 75 ms	Fe 50 150 ms	Fe 51 305 ms	Fe 52 45.9 s 8.27 h	Fe 53 2.5 m 8.51 m	Fe 54 5.845	Fe 55 2.73 a	Fe 56 91.754	Fe 57 2.119	Fe 0
151	β ⁺ βp 2.1	в ⁺ вр 5.98; 4.88 у 892°; 1095°	β ⁺ βp 0.93	β ⁺ βp 1.92	β ⁺ γ 651 9	β* 10 γ23'	929; 81,622; 81,0 2008; 7 mg	13701; 1385; 6* 2.5 1011) 7378; 2340 (1620)	σ 2.3 σ _{n, α} 1E-5	ε no γ σ 13 σ _{n, α} 0.01	σ2.8	σ1.4	σ 1.3
In 44 105 ns	Mn 45 <70 ns	Mn 46 34.4 ms	Mn 47 ~100 ms	Mn 48 158 ms	Mn 49 382 ms	Mn 50 1.75m 283 ms	Mn 51 46.2 m	Mn 52	Mn 53 3.7 · 10 ⁶ a	Mn 54 312.2 d	Mn 55 100	Mn 56 2.58 h	M 1.
	p?	в+ Вр 4.26; 2.94; 3.48	р* вр 0.65	β ⁺ γ 752; 1106; 3676 βρ	β ⁺ 6.7 γ 272; 2505	β* 3. 3.7 γ 109, β* 6.6 783, γ (3026, 1443, 2844)	β ⁺ 2.2 γ (749)	B+2.6. 1434; 1434 936; 12378 744.	no y or 70	γ 835 σ <10	σ13.3	β ⁻ 2.9 y847; 1811; 2113	β= 2.6 γ 14; 1
Or 43 0.8 ms	Cr 44 53 ms	Cr 45 50 ms	Cr 46 0.26 s	Cr 47 472 ms	Cr 48 21.6 h	0r 49 42 m	Cr 50 4.345	Cr 51 27.70 d	Cr 52 83.789	Cr 53 9.501	Cr 54 2.365	Cr 55 3.50 m	C 5.
.83; 3.08 54* 4.29; βα.?	β± βр 0.93	β ⁺ βр 2.05	β ⁺	β ⁺ 6.4 γ 87	ε γ 308; 112	β* 14; 1.5 γ91 153; 62	er 15	ε γ 320 σ < 10	σ0.8	σ 18	o 0.36	β ⁻ 2.6 γ (1528)	β= 1.5 γ 83; 2
V 42 55 ns	V 43 >800 ms	V 44 150 ms 104 ms	V 45 547 ms	V 46 422.6 ms	V 47 32.6 m	V 48 15.97 d	V 49 330 d	V 50 0.250	V 51 99.750	V 52 3.75 m	V 53 1.6 m	V 54 49.8 s	6
	β ⁺ βp	рт у 1083; рт 1371; у 1083; 1561; 1448 2834 рн 2.78	β ⁺ 6.1 γ40	β ⁺ 6.0 γ(2611)	β* 1.9 γ(1794)	β+ (7 γ 981; 1312; 944	€ 10 y	1.4 · 10 ¹⁷ a «; β ⁻ γ 1554; 783 σ 21; σ _{0, p} 0.007	σ4.9	β ⁻ 2.5 γ 1434	β ⁻ 2.5 γ 1006; 1289	β ⁻ 3.0; 5.2 γ835; 989; 2259	β ⁻ 5.4 γ 518;
Ti 41 30 ms	Ti 42 0.20 s	Ti 43 509 ms	Ti 44 60.4 a	Ti 45 3.08 h	Ti 46 8.25	Гі 47 7.44	Ti 48 73.72	Ti 49 5.41	Ti 50 5.18	Ti 51 5.8 m	Ti 52 1.7 m	Ti 53 32.7 s	T
.73; 3.08;	β ⁺ 5.4; 6.0 γ 611	β ⁺ 5.8 γ 2200 045	78; 68; o	β ⁺ 1.0 γ(720)	d 0.6	σ1.	σ7.9	σ1.9	o 0.179	β ⁻ 2.1 γ 320; 928	β ⁻ 1.8 γ 124; 17	β ⁻ 3.1; 4.8 γ 128; 228; 1676; 101	β- γ~90
Sc 40 83 ms	Sc 41 596 ms	Sc 42	Sc 43 3.89 h	Sc 44 244 d 3.92 h	Sc 45 100	SC 46 18.1s 83.82 d	Sc 47 3.35 d	Sc 48 43.67 h	Sc 49 57.2 m	Sc 50 1.7 m	Sc 51 12.4 s	Sc 52 8.2 s	S >
.7; 9.6 37; 755 .09; 1.00 .31; 3.75	β ⁺ 5.5 γ(2575; 2959)	1528 1528; 8* 5.4 1227 1(1525)	β [†] 1.2 γ373	y (1002; 1261; p* 1.5 1157) y 1157	σ 10 + 17	β ⁻ 0.4 γ 889; 1121 1γ 141	β= 0.4; 0.6 v 159	β ⁻ 0.7 γ 984; 1312; 1038	β ⁻ 2.0 γ (1762; 1623)	β= 3.7; 4.2 γ 1554; 1121; 524	β 4.3; 5.0 γ 1437; 2144; 1568	β ⁻ 7.0 γ 1050; 1268; 1032; 1215	в-
	(80.0/2000)	a 41 · 10 ⁵ a	Ca 42 0.647	Ca 43 0.135	Ca 44 2.086	Ca 45 163 d	Ca 46 0.004	Ca 47 4.54 d	Ca 48 0.187	Ca 4 8.72			
		0.18	σ 0.65	σ6	σ 0.8	β= 0.3 γ(12); e= σ=15	ıı 0.70	β ⁻ 0.7; 2.0 γ 1297; 808; 489	or 1.0	β ⁻ 2.2; 2.5 γ 3084; 40			
		40_	K 41	K 42	K 43	K 44	K 45	K 46	K 47	K A	Rrown	May 1	9 1



Alex Brown, May 19, 2010

1970 first proton decay from an isomer - in ⁵³Co

Volume 33B, number 4

PHYSICS LETTERS

26 October 1970

53 Com: A PROTON-UNSTABLE ISOMER†

K. P. JACKSON *, C. U. CARDINAL **, H. C. EVANS † and N. A. JELLEY

Nuclear Physics Laboratory, University of Oxford, England

J. CERNY#

Nuclear Physics Laboratory, University of Oxford, England: and Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, USA. Received 23 September 1970

A 1.53 \pm 0.04 MeV proton activity with a 245 \pm 20 ms half-life has been observed in the reaction of 16 O on 40 Ca. The most plausible origin of this activity is the proton radioactivity of 53 Com, although the decay of this isomer by beta-delayed proton emission remains a possibility.

Volume 33B, number 4

PHYSICS LETTERS

26 October 1970

CONFIRMED PROTON RADIOACTIVITY[‡] OF ⁵³Co^m

J. CERNY, J. E. ESTERL, R. A. GOUGH* and R. G. SEXTRO

Department of Chemistry and Lawrence Radiation Laboratory University of California, Berkeley, California 94720, USA

Received 23 September 1970

Proton-induced reactions on 54 Fe produce a proton activity $[1.57 \pm 0.03 \,\mathrm{MeV}; 242 \pm 15 \,\mathrm{ms}]$ with a threshold of $26.3 \pm 0.4 \,\mathrm{MeV}$ which can only arise from $^{53}\mathrm{Co^{m}}$. Failure to detect positron-proton coincidences in the decay of this isomer establishes its *direct* proton radioactivity.

1.E.4

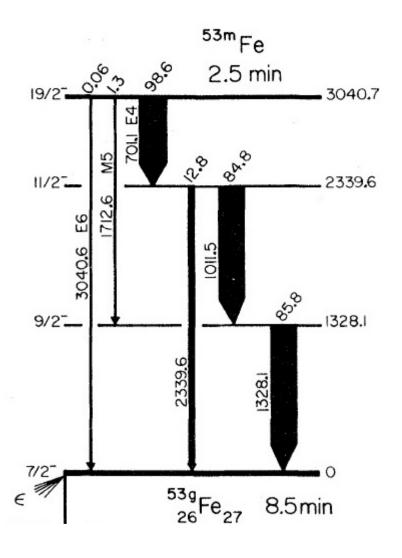
Nuclear Physics A188 (1972) 666-672; © North-Holland Publishing Co., Amsterdam

Not to be reproduced by photoprint or microfilm without written permission from the publisher

FURTHER RESULTS ON THE PROTON RADIOACTIVITY OF 53mCo

JOSEPH CERNY, R. A. GOUGH[†], R. G. SEXTRO and JOHN E. ESTERL^{††}

Department of Chemistry and Lawrence Berkeley Laboratory, University of California,


Berkeley, California 94720^{†††}

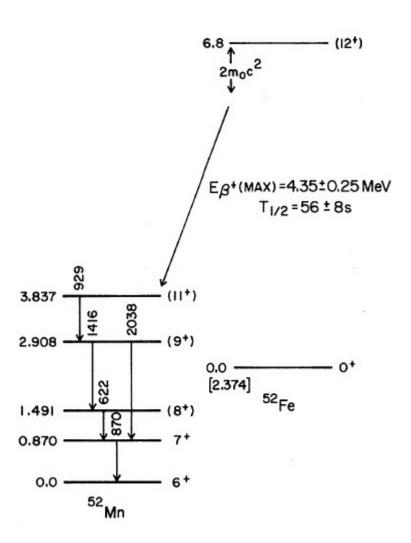
Received 7 March 1972

Abstract: Additional studies on the proton radioactivity of the 247±12 msec isomer ^{53m}Co lead to an improved estimate of ≈ 17 sec for its partial half-life for emission of 1.59±0.03 MeV protons to the ⁵²Fe ground state. An upper limit of 1/250 for the ratio of direct proton decay to the ⁵²Fe*(2+, 0.84 MeV) state relative to decay to the ⁵²Fe(g.s.) can be set.

1975 first E6 decay - from an isomer ⁵³Fe

Decays of the $f_{7/2}$ isomers ⁵³Fe^g and ⁵³Fe^m

J. N. Black* and Wm. C. McHarris†


Department of Chemistry, Cyclotron Laboratory, and Department of Physics,
Michigan State University, East Lansing, Michigan 48824

W. H. Kelly and B. H. Wildenthal

Cyclotron Laboratory§ and Department of Physics, Michigan State University, East Lansing, Michigan 48824 (Received 25 July 1974)

1975 beta isomer in ⁵²Fe

⁵²Fe(6.8 MeV) β-Decaying Isomeric State*

D. F. Geesaman, R. Malmin, R. L. McGrath, and J. W. Noé Department of Physics, State University of New York, Stony Brook, New York 11974

and

J. Cerny

Lawrence Berkeley Laboratory and Department of Chemistry, University of California,
Berkeley, California 94720
(Received 26 August 1974)

An isomeric state in 52 Fe has been located at $E_x = 6.83 \pm 0.25$ MeV with the reaction 40 Ca(14 N, pn) 52 Fe. The state decays by positron emission to the (11⁺) 3.837-MeV state of 52 Mn with $T_{1/2} = 56 \pm 8$ sec. The probable spin and parity of the isomer is 12^+ .

1979 search for E4 gamma in ⁵²Fe – not found

PHYSICAL REVIEW C

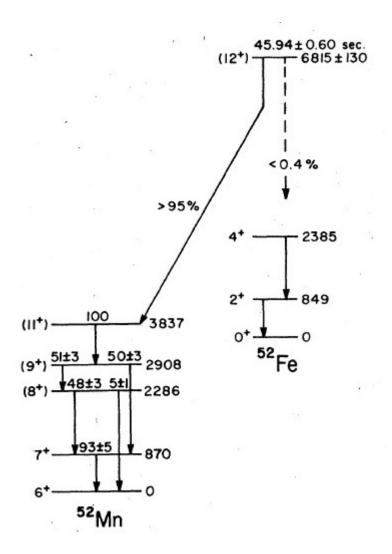
VOLUME 19, NUMBER 5

MAY 1979

Yrast states in 52Fe, 52Mn and the decay of 52Fem

D. F. Geesaman,* R. L. McGrath, J. W. Noé, and R. E. Malmin[†] Department of Physics, State University of New York, Stony Brook, New York 11794 (Received 5 December 1978)

Exp. Calc. Calc. Exp.
$$\frac{3.64}{2.99} = \frac{19/2^{-}}{15/2^{-}} = \frac{3.31}{3.03} = \frac{15/2^{-}}{3.03} = \frac{3.04}{19/2^{-}} = \frac{19/2^{-}}{3.03} = \frac{2.34}{11/2^{-}} = \frac{11/2^{-}}{2.36} = \frac{2.34}{11/2^{-}} = \frac{1.68}{9/2^{-}} = \frac{1.58}{9/2^{-}} = \frac{1.33}{9/2^{-}} = \frac{9/2^{-}}{1.33} = \frac{0.0}{9/2^{-}} = \frac{0.0}{7/2^{-}} = \frac{0.0}$$


FIG. 10. Comparison of experimental and $(1f_{7/2})^{\pm 3}$ model level schemes of 43 Sc and 53 Fe. Effective interactions taken from 42 Sc and 54 Co spectra were used for 43 Sc and 53 Fe, respectively.

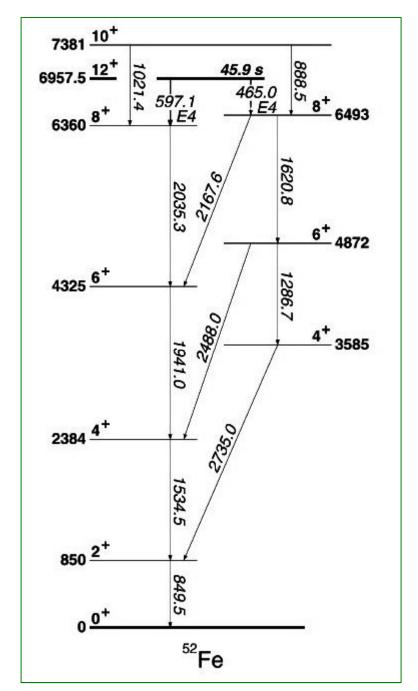
Exp. Calc. Calc. Exp.
$$\frac{8.04}{7.67} (10^{+}) \frac{7.69}{7.38} \frac{12^{+}}{10^{+}} \frac{7.04}{6.97} \frac{10^{+}}{12^{+}} \frac{6.82}{6.97} (12^{+}) \frac{6.51}{12^{+}} \frac{6.08}{6.97} \frac{8^{+}}{12^{+}} \frac{6.82}{6.97} (12^{+}) \frac{4.02}{6.97} \frac{6^{+}}{12^{+}} \frac{4.06}{6.97} \frac{6^{+}}{12^{+}} \frac{4.34}{6^{+}} \frac{6^{+}}{6^{+}} \frac{2.79}{4^{+}} \frac{4^{+}}{2.78} \frac{2.78}{4^{+}} \frac{4^{+}}{2.38} \frac{4^{+}}{4^{+}} \frac{1.08}{2^{+}} \frac{2^{+}}{1.06} \frac{1.05}{2^{+}} \frac{2^{+}}{0.85} \frac{0.85}{2^{+}} \frac{2^{+}}{0.0} \frac{0.0}{0^{+}} \frac{$$

FIG. 9. Comparison of experimental and $(1f_{7/2})^{\pm 4}$ model level schemes of 44 Ti and 52 Fe. Two different empirical effective interactions taken from 42 Sc and 54 Co spectra were used for 44 Ti and 52 Fe, respectively.

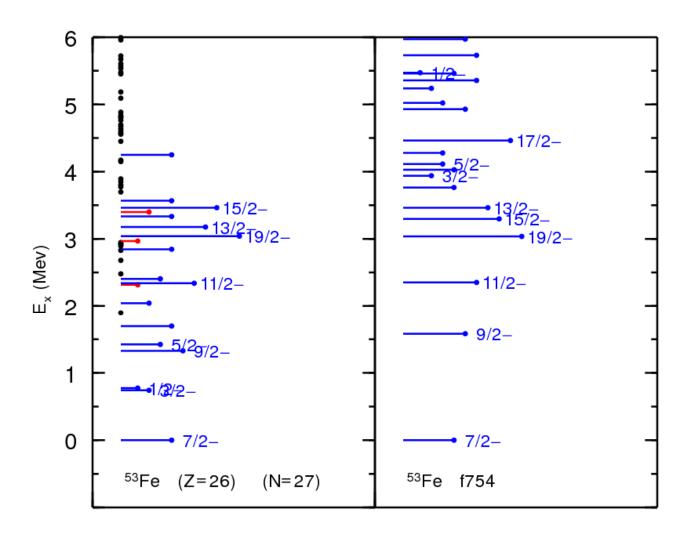
2005 search for E4 gamma in ⁵²Fe – found (GASP)

Available online at www.sciencedirect.com

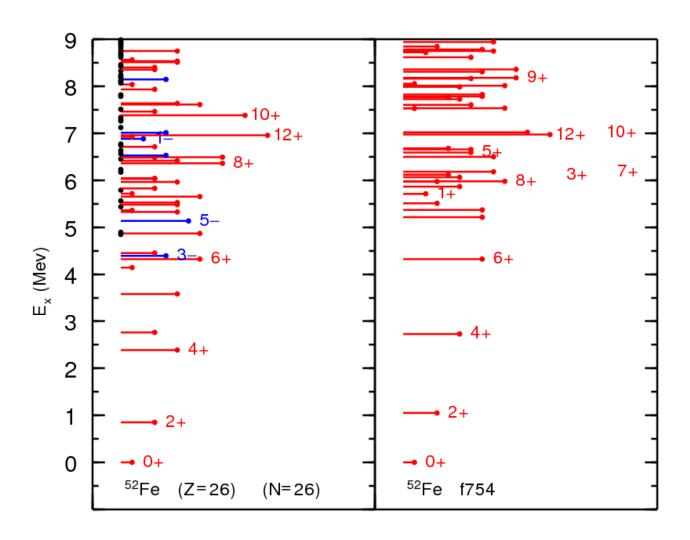
Physics Letters B 619 (2005) 88-94

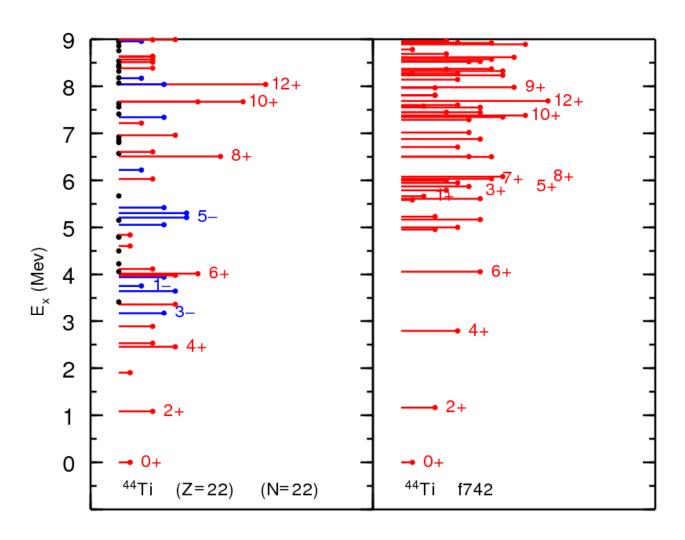

PHYSICS LETTERS B

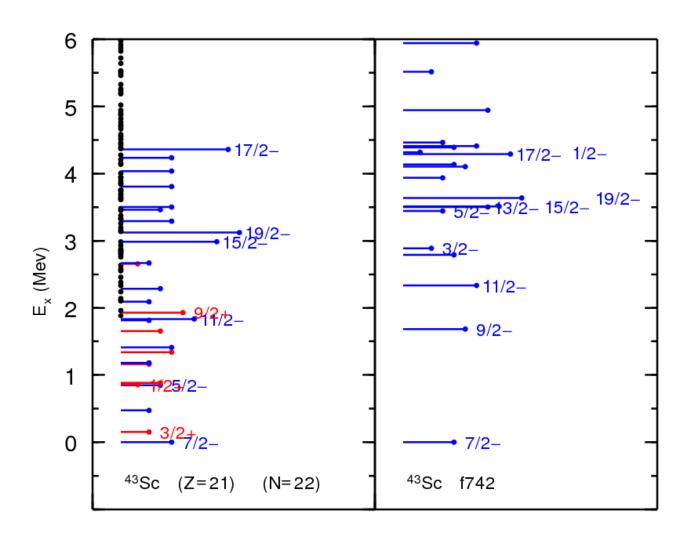
www.elsevier.com/locate/physletb

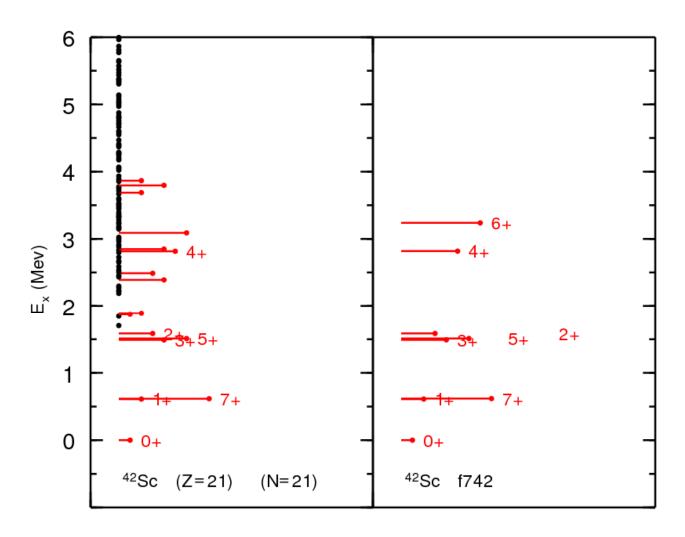

Hindered E4 decay of the 12⁺ yrast trap in ⁵²Fe

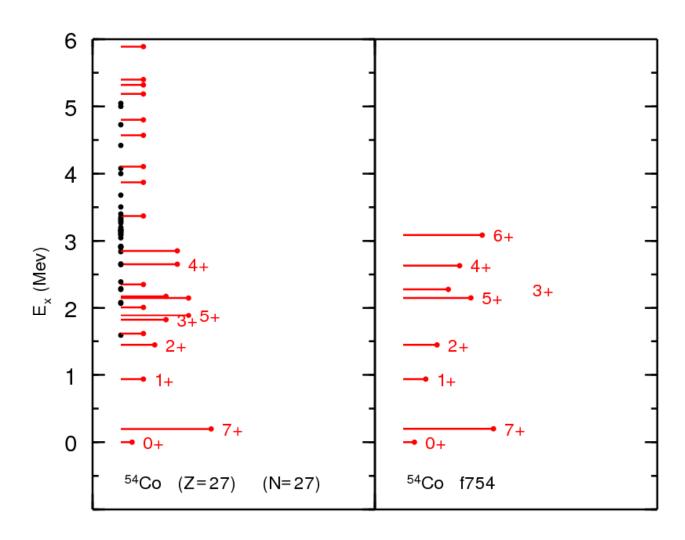
A. Gadea a, S.M. Lenzi b, D.R. Napoli a, M. Axiotis a, C.A. Ur b,c, G. Martínez-Pinedo d, M. Górska e, E. Roeckl e, E. Caurier f, F. Nowacki f, G. de Angelis a, L. Batist g, R. Borcea e, F. Brandolini b, D. Cano-Ott h, J. Döring e, C. Fahlander i, E. Farnea b, H. Grawe e, M. Hellström i, Z. Janas e,j, R. Kirchner e, M. La Commara e, C. Mazzocchi e,k, E. Nácher h, C. Plettner l, A. Płochocki j, B. Rubio h, K. Schmidt e, R. Schwengner l, J.L. Tain h, J. Żylicz j





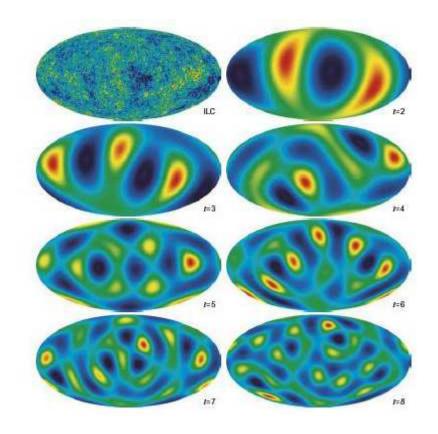





Why is there an isomer for holes and not for particles? The energy difference can be expressed in terms of $f_{7/2}$ two-body matrix elements

$$V_{JT} = \langle f_{7/2}, f_{7/2}, J, T \mid V \mid f_{7/2}, f_{7/2}, J, T \rangle$$

 $E(12^+) - E(10^+) =$
 $+0.35 V_{70} - 0.11 V_{50} - 0.24, V_{30}$
 $+1.47 V_{61} - 1.47 V_{41}$



E6 decay - from the 19/2^{- 53}Fe isomer

 $E2 2^2 = 4 \text{ tetrapole}$

 $E4 2^4 = 16 \text{ hexadecapole}$

 $E6\ 2^6=64\ hexacontate$ trapole

⁵³Fe E6 decay 19/2⁻ to 7/2⁻

$$B(E6)_{exp} = 0.26(4) \cdot 10^6 e^2 \text{fm}^{12}$$

 $f_{7/2}$ model space with $\hbar\omega=45A^{-1/3}-25A^{-2/3},\,e_p=1.5$ and $e_n=0.5$

$$B(E6) = 6.03 \cdot 10^6 e^2 \text{fm}^{12}$$

 $f_{7/2}$ model space with $\hbar\omega = 45A^{-1/3} - 25A^{-2/3}, e_p = 1$ and $e_n = 0$

$$B(E6) = 2.62 \cdot 10^6 e^2 \text{fm}^{12}$$

$$B(E6) = \frac{M^2}{2J_i + 1}$$

$$M_{exp} = 2.3 \cdot 10^3 \text{efm}^6$$

 $f_{7/2}$ model space with $\hbar\omega = 45A^{-1/3} - 25A^{-2/3}, e_p = 1$ and $e_n = 0$

$$M = 7.2 \cdot 10^3 \text{efm}^6$$

The E6 operator is

$$O(E6) = Y^{(6)}(\hat{r}_q) \, r_q^6 \, e_q$$

summed over all protons (q = p) and neutrons (q = n).

Where does this factor of three come from?

Isomer is "pure" compared to ground state in terms of mixing beyond $f_{7/2}$?

The radial integeral $< f_{7/2}|r^6|f_{7/2}>$ is uncertain?

$$M = A_p e_p + A_n e_n$$

with A_p and A_n in units of 10^3 e fm⁶ $f_{7/2}$ model space with $\hbar\omega=45A^{-1/3}-25A^{-2/3},$

$$A_p = 7.25$$

$$A_n = 0.21$$

$$M_{exp}=2.3\,$$

BAB notes from around 1980

1975 considered one-nucleon excited to $f_{5/2}$

PHYSICAL REVIEW C

VOLUME 11, NUMBER 5

MAY 1975

E6 transition in ⁵³Fe[†]

D. H. Gloeckner* and R. D. Lawson

Argonne National Laboratory, Argonne, Illinois 60439

(Received 24 February 1975)

The $\frac{19}{2}$ \rightarrow $\frac{7}{2}$ E 6 transition in 53 Fe is calculated in a model including all basis states of the configurations $(f_{7/2})^{13}_{IT}$ and $[(f_{7/2})^{12}_{IT}, \times f_{5/2}]_{IT}$. Several interactions, which yield the observed amount of $f_{5/2}$ configuration mixing, have been considered. In all cases an effective charge $\delta \cong -0.4$ is needed to fit experiment (where $e_p = 1 + \delta$, $e_n = \delta$).

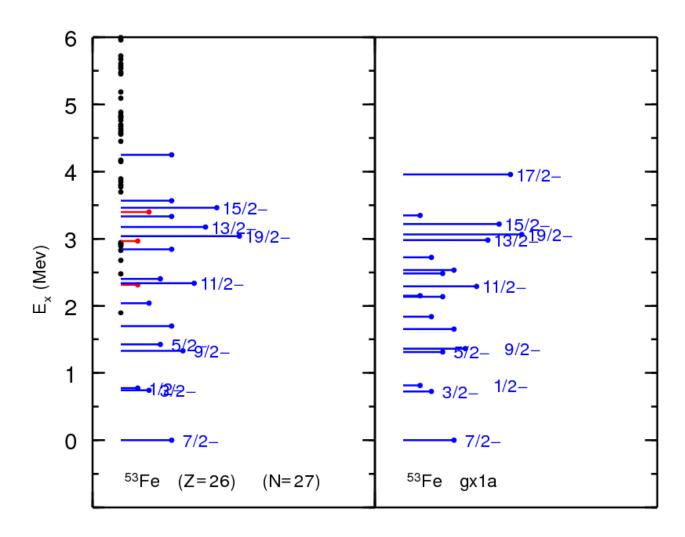
Thanks to Bill Rae with NuShellX and many years work on the effective Hamiltonian, the full pf shell can now be done.

$$0f_{7/2} D(M = 7/2) = 16$$

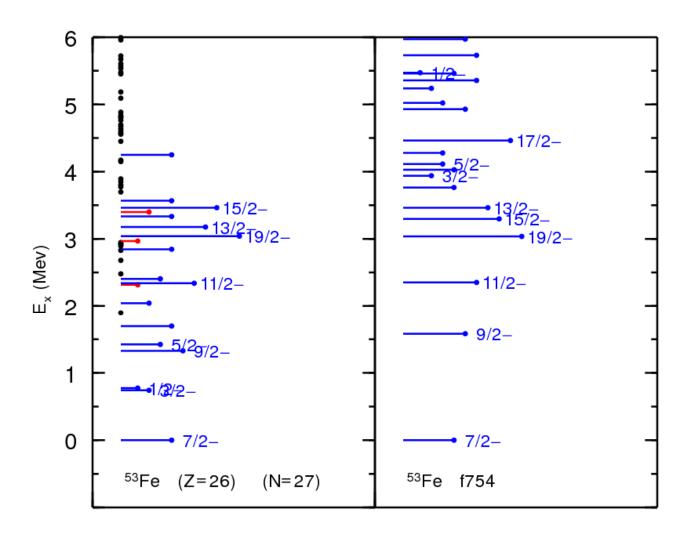
$$0f_{7/2} D(J = 7/2) = 4$$

$$0f_{7/2} D(J = 19/2) = 1$$

$$pf D(M = 7/2) = 177,805,002$$


$$pf D(J = 7/2) = 21, 131, 892$$

$$pf D(J = 19/2) = 14,333,584$$



model space	J	$n(f_{7/2})$	percent $(f_{7/2})^{13}$
$f_{7/2}$	7/2	13	100
pf	7/2	12.0	54
$f_{7/2}$	19/2	13	100
pf	19/2	12.3	62

Results for the E6 matrix elements obtained with various pf shell Hamiltonians with $\hbar\omega=45A^{-1/3}-25A^{-2/3}$.

Hamiltonian	A_p	A_n		
	$10^3 \; (\mathrm{e} \; \mathrm{fm}^6)$	$10^3 \ (e \ fm^6)$		
$f_{7/2}$	7.25	0.21		
FPD6	3.76	0.27		
KB3G	4.66	0.36		
GPFX1A	4.40	0.22		
experiment	M = 2.3			

For FPD6 we would conclude for the effective charge $e_p = 0.60$ or with $e_p = 1 + \delta e_p$, $\delta e_p = -0.4$.

2005 search for E4 gamma in ⁵²Fe – found

Available online at www.sciencedirect.com

Physics Letters B 619 (2005) 88-94

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

Hindered E4 decay of the 12⁺ yrast trap in ⁵²Fe

A. Gadea a, S.M. Lenzi b, D.R. Napoli a, M. Axiotis a, C.A. Ur b,c, G. Martínez-Pinedo d, M. Górska e, E. Roeckl e, E. Caurier f, F. Nowacki f, G. de Angelis a, L. Batist g, R. Borcea e, F. Brandolini b, D. Cano-Ott h, J. Döring e, C. Fahlander i, E. Farnea b, H. Grawe e, M. Hellström i, Z. Janas e,j, R. Kirchner e, M. La Commara e, C. Mazzocchi e,k, E. Nácher h, C. Plettner l, A. Płochocki j, B. Rubio h, K. Schmidt e, R. Schwengner l, J.L. Tain h, J. Żylicz j

$$e_p = 1.5 \text{ and } e_n = 0.5$$

	$J_i \rightarrow J_f$	B(E4) (W.u.)						
		Exp	FPD6	KB3G	GXPF1			
⁵² Fe	$12^+ \rightarrow 8_1^+$	$4.6(17) \times 10^{-4}$	2.4×10^{-3}	3.3×10^{-1}	6.5×10^{-2}			
52Fe	$12^+ \rightarrow 8^+_2$	$3.5(13) \times 10^{-3}$	4.7×10^{-3}	2.6×10^{-2}	2.3×10^{-2}			
⁴⁴ Sc	$6^+ \to 2^{+^2}$	1.42	1.96	1.79	1.65			
⁴⁶ Ti	$4^{+} \rightarrow 0^{+}$	1.6	10.7	7.9	7.39			
52Mn	$2^{+} \rightarrow 6^{+}$	0.138	0.272	0.422	0.728			
⁵³ Fe	$\frac{19}{2}^{-} \rightarrow \frac{11}{2}^{-}$	0.256	0.151	1.23	0.84			
⁵⁴ Fe	$10^+ \to 6^+$	0.79	1.80	0.98	1.25			

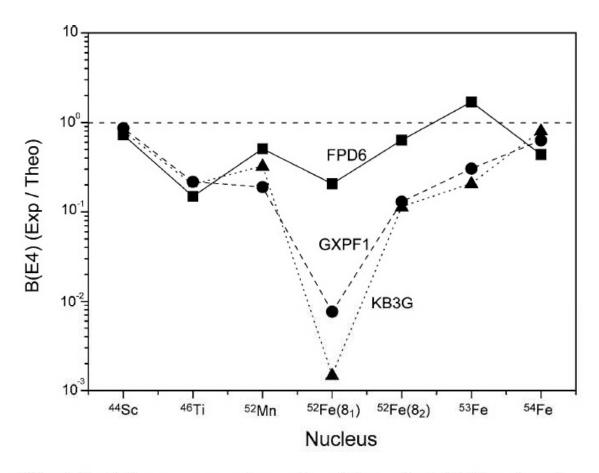
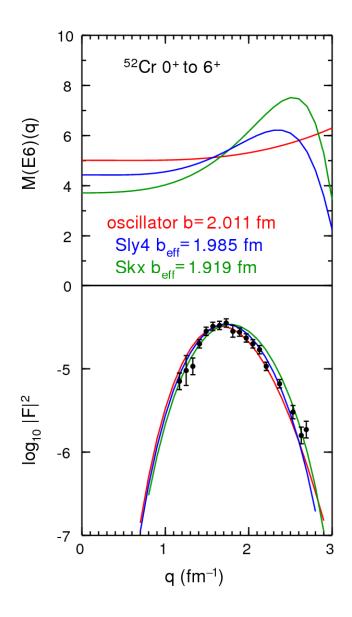


Fig. 4. Ratio between experimental and theoretical B(E4) values for nuclei in the $f_{7/2}$ shell. Results obtained by using the FPD6, GXPF1 and KB3G interactions are shown by squares (full line), full circles (dashed-line) and triangles (dotted-line), respectively. See Table 2 for details.

Results for the E6 matrix elements obtained with various radial wavefunctions for GPFX1A.

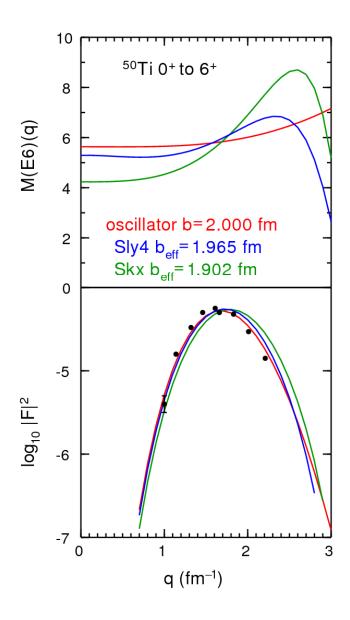
Radial	A_p	A_n
	$10^3 \text{ (e fm}^6)$	A_n $10^3 \text{ (e fm}^6)$
$\hbar\omega = 45A^{-1/3} - 25A^{-2/3}$	4.66	0.27
Skx	3.23	0.15
SLy4	3.73	0.18
experiment	M = 2.3	

						75 ns	>200 ns	78 ms	199 ms	3.20 s	82 s	23 m	3
			23	or 3.8	p? β+?	p?	β ⁺ ? p ?	β ⁺ γ 2701; 1225; 2506; 2783	β ⁺ 7.7. A γ 1112	β ⁺ 7.5 γ 1454; 1448; 40	β ⁺ 3.8 γ 1302; 878; 339; 485	β ⁺ 2.0; 3.9 γ 1332; 1792; 826	β ⁺ 1.2 γ 283; 1186.
Ni 3.6934	Ni 48 ~2 ms ?	Ni 49 13 ms	Ni 50 12 ms	Ni 51 >200 ns	Ni 52 38 ms	Ni 53 5 ms	Ni 54 104 ms	Ni 55 209 ms	Ni 56 6.075 d	Ni 57 36.0 h	Ni 58 68.0769	Ni 59 7.5 · 10 ⁴ a	N 26
	2p 1.35 ?	в+ вр 3.7	β+ βp	β+?	в ⁺ вр 1.34; 1.06	β ⁺ βp 190	β ⁺ γ 937 9	β ⁺ 7.7 γ (2919; 2976; 3303)	ε; no β ⁺ γ 158; 812; 750; 480; 270	6 β+ 0.8 γ 1378; 1920; 127	σ 4.6 σ _{0, α} <0.00003	ε; β ⁺ no γ; σ 77.7 σ _{n, α} 14; σ _{n, p} 2 σ _{abs} 92	σ 2 .9
Co 933200			Co 49 <35 ns	Co 50 44 ms	Co 51 <200 ns	Co 52	Co 53 247 ms 240 ms	Co 54 1.48 m 193.2 ms	Co 55 17.54 h	Co 56 77.26 d	Co 57 271.79 d	Co 58 8.94 h 70.86 d	C
19			p?	в ⁺ вр 2.70; 2.00	β+ ?	8* 7849; 1535; 7849 1329; 177 1942	p1.56 p1.328	61 4.3 7 4.1 1130; p 7.3 1407 y (2561)	β ⁺ 1.5 γ 931; 477; 1409	ε; β* 1.5 γ847; 1238; 2598; 1771; 1038	ε γ 122; 136; 14	iy (25) 5 0.5; e ⁻ y 811 o 140000 o 1900	σ 20.7
e 45 75 ms	Fe 46 10.3 ms	Fe 47 21.6 ms	Fe 48 51 ms	Fe 49 75 ms	Fe 50 150 ms	Fe 51 305 ms	Fe 52 45.9 s 8.27 h	Fe 53 2.5 m 8.51 m	Fe 54 5.845	Fe 55 2.73 a	Fe 56 91.754	Fe 57 2.119	Fe 0
151	β ⁺ βp 2.1	в ⁺ вр 5.98; 4.88 у 892°; 1095°	β ⁺ βp 0.93	β ⁺ βp 1.92	β ⁺ γ 651 9	β* 10 γ23'	929; 81,622; 81,0 2008; 7 mg	1701; 1335; p ⁺ 3.5 1011; sar8; 2340 (1620)	σ 2.3 σ _{n, α} 1E-5	ε no γ σ 13 σ _{n, α} 0.01	σ2.8	σ1.4	σ 1.3
In 44 105 ns	Mn 45 <70 ns	Mn 46 34.4 ms	Mn 47 ~100 ms	Mn 48 158 ms	Mn 49 382 ms	Mn 50 1.75m 283 ms	Mn 51 46.2 m	Mn 52	Mn 53 3.7 · 10 ⁶ a	Mn 54 312.2 d	Mn 55 100	Mn 56 2.58 h	M 1.
	p?	β ⁺ Вр 4.26; 2.94; 3.48	р+ вр 0.65	β ⁺ γ 752; 1106; 3676 βρ	β ⁺ 6.7 γ 272; 2505	β* 3. 3.7	β ⁺ 2.2 γ (749)	#* 2.6. 1434; 1434; 1434; 14378 744.	ε no γ α 70	γ 835 σ < 10	σ13.3	β ⁻ 2.9 y847; 1811; 2113	β= 2.6 γ 14;
Or 43 0.8 ms	Cr 44 53 ms	Cr 45 50 ms	Cr 46 0.26 s	Cr 47 472 ms	Cr 48 21.6 h	Or 49 42 m	Cr 50 4.345	Cr 51 27.70 d	Cr 52 83.789	Cr 53 9.501	Cr 54 2.365	Cr 55 3.50 m	C 5.
.83; 3.08 54* 4.29; βα.?	β± βр 0.93	β ⁺ βр 2.05	β ⁺	β ⁺ 6.4 γ 87	ε γ 308; 112	β ⁺ 14; 1.5 γ 91 153; 62	er 15	γ 320 σ < 10	or 0.8	σ 18	o 0.36	β ⁻ 2.6 γ (1528)	β= 1.5 γ 83; 2
V 42 55 ns	V 43 >800 ms	V 44 150 ms 104 ms	V 45 547 ms	V 46 422.6 ms	V 47 32.6 m	V 48 15.97 d	V 49 330 d	V 50 0.250	V 51 99.750	V 52 3.75 m	V 53 1.6 m	V 54 49.8 s	6
	β+ βp	7 1083; 6 [†] 1371; 7 1083; 1561; 1446 2834 8s 2.78	β ⁺ 6.1 γ40	β ⁺ 6.0 γ(2611)	β* 1.9 γ(1794)	β ⁺ (7 γ 984; 1312; 944	€ 10 y	1.4 · 10 ¹⁷ a ε; β ⁻ γ 1554; 783 σ 21; σ _{0, β} 0.007	σ4.9	β= 2.5 γ 1434	β ⁻ 2.5 γ 1006; 1289	β ⁻ 3.0; 5.2 γ835; 989; 2259	β ⁻ 5.4 γ 518;
Ti 41 80 ms	Ti 42 0.20 s	Ti 43 509 ms	Ti 44 60.4 a	Ti 45 3.08 h	Ti 46 8.25	Гі 47 7.44	Ti 48 73.72	Ti 49 5.41	Ti 50 5.18	Ti 51 5.8 m	Ti 52 1.7 m	Ti 53 32.7 s	T
.73; 3.08;	β ⁺ 5.4; 6.0 γ 611	β ⁺ 5.8	78; 68; p	β ⁺ 1.0 γ(720)	or 0.6	o 1.	σ7.9	σ 1.9	or 0.179	β ⁻ 2.1 γ320; 928	β ⁻ 1.8 γ 124; 17	β ⁻ 3.1; 4.8 γ 128; 228; 1676; 101	β- γ~90
Sc 40 83 ms	Sc 41 596 ms	Sc 42	Sc 43 3.89 h	Sc 44 244 d 3.92 h	Sc 45 100	\$C 46	Sc 47 3.35 d	Sc 48 43.67 h	Sc 49 57.2 m	Sc 50 1.7 m	Sc 51 12.4 s	Sc 52 8.2 s	S >
.7; 9.6 37; 755 .09; 1.00 .31; 3.75	β ⁺ 5.5 γ(2575; 2959)	1528 1528; 8* 5.4 1227 1(1525)	β [†] 1.2 ∾373	y (1002; 1261; p* 1.5 1157) y 1157	σ 10 + 17	β ⁻ 0.4 γ 889; 1121 1y 146 or 8.0	β= 0.4; 0.6 v 159	β ⁻ 0.7 γ 984; 1312; 1038	β ⁻ 2.0 γ (1762; 1623)	β= 3.7; 4.2 γ 1554; 1121; 524	β ⁺ 4.3; 5.0 γ 1437; 2144; 1568	β ⁻ 7.0 γ 1050; 1268; 1032; 1215	8-
3.73.73	(teor V, 2003)	a 41 - 10 ⁵ a	Ca 42 0.647	Ca 43 0.135	Ca 44 2.086	Ca 45 163 d	Ca 46 0.004	Ca 47 4.54 d	Ca 48 0.187	Ca 4 8.72		The state of the s	
		0.18	σ 0.65	σ6	σ 0.8	β ⁻ 0.3 γ (12); e ⁻ σ~15	ı ı 0.70	β ⁻ 0.7; 2.0 γ 1297; 808; 489	or 1.0	β ⁻ 2.2; 2.5 γ 3084; 40			
		40_	K 41	K 42	K 43	K 44	K 45	K 46	K 47	K A	Rrown	May 1	9 1



Alex Brown, May 19, 2010

	E6 transition	A_p	A_n
		$10^3 \; (e \; fm^6)$	$10^3~(\mathrm{e~fm}^6)$
$^{53}\mathrm{Fe}$	$19/2^- \to 7/2^-$	4.40	0.22
$^{52}{ m Cr}$	$0^{+} \rightarrow 6^{+}$	5.01	1.51
$^{50}{ m Ti}$	$0^{+} \to 6^{+}$	5.63	1.62
$^{58}{ m Ni}$	$0^+ \to 6^+(2)$	6.42	7.25
$^{58}{ m Ni}$	$0^+ \to 6^+(3)$	2.98	-3.50


1983 ⁵²Cr(e,e')

$$e_p = 1$$
 and $e_n = 0$

1988 ⁵⁰Ti(e,e')

$$e_p = 1$$
 and $e_n = 0$

Longitudinal form factor for E6(C6) in the oscillator model (L=6, b is the oscillator length)

$$F(q) \approx (qb)^L \exp[-(bq)^2/2]$$

has a maximum at

$$q_{max} = \sqrt{2L/b^2}$$

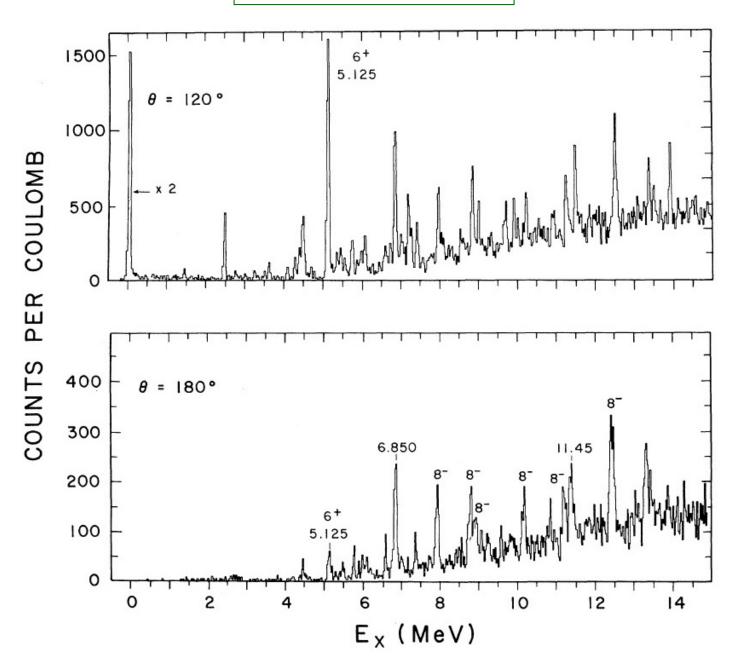
and since

$$q_{max}b = \sqrt{2L}$$

the value at the maximum is independent of b

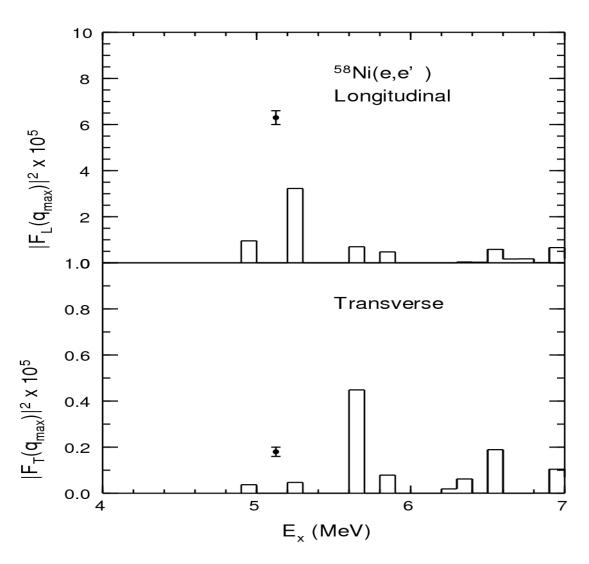
Isoscalar Character of the $J^{\pi} = 6^+$, $E_x = 5.125$ MeV State in ⁵⁸Ni

R. A. Lindgren, J. B. Franz, W. J. Gerace, R. S. Hicks, A. Hotta, (a) D. Huse, G. A. Peterson, and R. C. York


Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003

and

C. F. Williamson and S. Kowalski



The main component for the E6 excitation in 58 Ni is $(f_{7/2})^{16}(p_{3/2})^2(0^+) \rightarrow (f_{7/2})^{15}(p_{3/2})^2, f_{5/2}(6^+)$ e.g. an $f_{7/2}$ to $f_{5/2}$ transition

Core polarization charge for E6 transition

Hiroyuki Sagawa*

	$\delta e_{\dot{p}}$			δe_n		
L	2	4	6	2	4	6
Gillet	0.095	0.114	0.103	0.457	0.428	0.212
G matrix	0.154	0.115	0.076	0.428	0.363	0.267
Serber	0.257	0.191	0.126	0.514	0.382	0.253
Wigner	0.483	0.067	-0.138	0.664	0.299	0.076
Rosenfeld	0.079	0.156	0.164	0.357	0.402	0.351
ATO	0.289	0.040	-0.083	0.462	0.344	0.227
Schematic	0.19	0.18	-0.06	0.81	0.82	0.52
Exp.	0.06 ±	0.07	-0.3 ± 0.1	0.57 ±	0.03	

Sagawa – theory summary

	δe_p	δe_n	$\delta e_p + \delta e_n$	$\delta e_p - \delta e_n$
E2	0.19	0.81	1.00	-0.62
E4	0.18	0.82	1.00	-0.64
E6	-0.06	0.52	0.46	-0.58

experimental summary

	δe_p	δe_n	$\delta e_p + \delta e_n$	$\delta e_p - \delta e_n$
E2	0.2	0.8	1.0	-0.6
E4			1.0	
E6	-0.2	0.6	0.4	-0.8

 $\delta e_p + \delta e_n$ is determined by coupling of the valence nucleon with the *L*-pole isoscalar (ΔT =0) giant resonance. Attractive particle-hole interaction for ΔT =0 means that the energy of the resonance is lower than $L\hbar\omega$ and that $\delta e_p + \delta e_n > 0$.

 $\delta e_p - \delta e_n$ is determined by coupling of the valence nucleon with the *L*-pole isovector (ΔT =1) giant resonance. Repulsive particle-hole interaction for ΔT =1 means that the energy of the resonance is higher than $L\hbar\omega$ and that $\delta e_p - \delta e_n < 0$.

Effective Charges in the fp Shell


R. du Rietz, J. Ekman, D. Rudolph, C. Fahlander, A. Dewald, O. Möller, B. Saha, M. Axiotis, M. A. Bentley, C. Chandler, G. de Angelis, F. Della Vedova, A. Gadea, G. Hammond, S. M. Lenzi, N. Mărginean, D. R. Napoli, M. Nespolo, C. Rusu, and D. Tonev

¹Department of Physics, Lund University, S-22100 Lund, Sweden
²Institut für Kernphysik der Universität zu Köln, D-50937 Köln, Germany
³Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
⁴School of Chemistry and Physics, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
⁵Dipartimento di Fisica dell'Università and INFN, Sezione di Padova, I-35141 Padova, Italy
(Received 16 August 2004; published 22 November 2004)

Following the heavy-ion fusion-evaporation reaction $^{32}\text{S} + ^{24}\text{Mg}$ at 95 MeV beam energy the lifetimes of analogue states in the $T_z = \pm 1/2$ A = 51 mirror nuclei ^{51}Fe and ^{51}Mn have been measured using the Cologne plunger device coupled to the GASP γ -ray spectrometer. The deduced $B(E2; 27/2^- \rightarrow 23/2^-)$ values afford a unique opportunity to probe isoscalar and isovector polarization charges and to derive effective proton and neutron charges, ε_p and ε_n , in the fp shell. A comparison between the experimental results and several different large-scale shell-model calculations yields $\varepsilon_p \sim 1.15e$ and $\varepsilon_n \sim 0.80e$.

1970 first proton decay from an isomer - in ⁵³Co

Isomeric proton decay ⁵³Co 19/2⁻ to ⁵²Fe 0⁺

$$Q_p = 1.59(3) \text{ MeV}$$

$$T_{1/2} = 17 \text{ s}$$

Must go by $\ell=9$ due to mxing with the $(n,\ell,j^{\pi})=(0,9,19/2^{-})$ orbital

With Oxbash we can do a shell-model calculation in the model space

$$(f_{7/2})^n + (f_{7/2})^{n-1}\ell_{19/2}$$

with an Hamiltonian based on N3LO with V_{lowk}

	S in units of 10^{-9}
exp with $r_0 = 1.2 \text{ fm}$	57(20)
exp with $r_0 = 1.4 \text{ fm}$	4(2)
theory	12

Typical two-body interaction matrix element

$$\langle f_{7/2}f_{7/2}6^+ | V | f_{7/2}\ell_{19/2}6^+ \rangle = 50 \,\text{keV}$$

