MANCHESTER 1824 ## Circumvention of K-selection rule in isomer decay - <u>3 main methods</u> where K-Selection Rule is known <u>not</u> to be obeyed: - 1. Coriolis Mixing (172Hf, T-Bands, Band Crossings...) - 2. Density of States arguments (K-isomers can be highly non-yrast and decay because of very high-level density.) - **3.** Gamma-Softness (182Os), loss of axial symmetry and gamma tunnelling. ### 2. Density of states arguments (K-isomers can be highly nonyrast and decay because of very high-level density.) K-forbidden transitions from multi-quasiparticle states P.M. Walker^{a,1}, D.M. Cullen^b, C.S. Purry^a, D.E. Appelbe^b, A.P. Byrne^c, G.D. Dracoulis^c, T. Kibédi^c, F.G. Kondev^{c,2}, I.Y. Lee^d, A.O. Macchiavelli^d, A.T. Reed^b, P.H. Regan^a, F. Xu^a Physics Letters B 408 (1997) 42-46 100 178Hf 16+ 176Hf 180W 178Hf 14reduced hindrance Fig. 1. Reduced hindrance, f_{ν} , as a function of energy relative to a rigid rotor, $E_K - E_R$, for $\Delta K \ge 6$, E2 and E3 decays from 4-quasiparticle states. Open circles correspond to E2 decays to 10 4-quistpantice states. Open circles correspond to E2 decays to $K^{\pi} = 0^+$ bands, and filled circles correspond to E2, $\Delta K = 6$ decays. The filled squares are for $\Delta K = 8$ decays in ¹⁷⁸Hf (E3) and ¹⁷⁴Hf (E2). The data points for ¹⁷²Hf and ¹⁷⁸W correspond ^{174Hf} O to half their upper-limit half-lives. The values for the other nuclei have statistical uncertainties that are smaller than the data points. Note that there are two data points for each of $^{172}\mathrm{Hf}$ (12⁺), $^{174}\mathrm{Hf}$ (14⁺) and $^{178}\mathrm{W}$ (12⁺). The line through the data represents a O 176W statistical-mixing estimate for $\Delta K = 6$ transitions, normalised at ¹⁷⁸Hf (14⁻). 182Os 16+ 1.0 1.5 2.0 2.5 energy difference (MeV ## "Nuclear Tidal waves" - Stefan Frauendorf ### Combination of - Angular momentum reorientation - Triaxial deformation → Shape change at nearly constant angular velocity Rotating mean field gives a reliable microscopic description No new parameters $$R(\vartheta, \varphi, t) = R_0 [1 + 2a_2 \cos(2\varphi - \Omega t) Y_{22}(\vartheta, \varphi = 0)]$$ $$\omega = \frac{\Omega}{2} \quad E = \omega L_z$$ | pin (ħ) | γ° | θ° | |---------|------------------|------------------| | 26.0 | -7.4 | 19.0 | | 27.0 | -9.7 | 23.7 | | 28.0 | -12.2 | 26.8 | | 29.0 | -15.0 | 28.5 | | 30.0 | -17.6 | 29.2 | | 31.0 | -20.4 | 30.7 | | 32.0 | -22.9 | 31.9 | | 33.0 | -25.1 | 33.3 | | 34.0 | -27.2 | 34.8 | | 35.0 | -29.0 | 36.3 | | 36.0 | -31.1 | 37.3 | | 37.0 | -33.4 | 37.4 | | 38.0 | -35.0 | 36.0 | | | | | (PRL 91(03)182501) Experimental rotational frequency well defined & constant in SC-TAC calculations. # Conclusions ### **Nuclear Tidal Wave / Multi-phonon Interpretation:** - Gives good explanation for anomalous high-K behaviour in **soft** osmium nuclei ¹⁸¹Os ¹⁸²Os, ¹⁸³Os [and perhaps ¹⁸⁰Os?] - Angular momentum generated by shape change at nearly constant angular velocity - Competes with collective rotation - Look for future examples... 2006 - Octupole (λ =3) tidal waves in discovered in ²²⁰Th W. Reviol, Phys Rev. C 74 (06) 044305 The University # Thanks to the collaborators... VOLUME 91, NUMBER 18 PHYSICAL REVIEW LETTERS week ending 31 OCTOBER 2003 #### Multiphonon Vibrations at High Angular Momentum in 182Os L. K. Pattison, ¹ D. M. Cullen, ¹ J. F. Smith, ¹ A. M. Fletcher, ¹ P. M. Walker, ² H. M. El-Masri, ² Zs. Podolyák, ² R. J. Wood, ² C. Scholey, ³ C. Wheldon, ³ G. Mukherjee, ⁴ D. Balabanski, ⁵ M. Djongolov, ⁶ Th. Dalsgaard, ⁷ H. Thisgaard, ⁷ G. Sletten, ⁷ F. Kondev, ⁸ D. Jenkins, ⁸ G. J. Lane, ⁹ L-Y. Lee, ⁹ A. O. Macchiavelli, ⁹ S. Frauendorf, ¹⁰ and D. Almehed ¹¹ **Ischuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom ²Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ³Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom ⁴Department of Physics, University of Massachusetts, Lowell, Massachusetts 01854, USA ⁵Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria ⁶Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁷Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen, Denmark ⁸Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA ⁹Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ¹⁰Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA ¹¹Department of Physics, USIS, PO. Box 88, Manchester M60 1QD, United Kingdom (Received 25 July 2002; published 30 October 2003) N. Lumley (180Os), R. Glover (183Os)