

Differential isomeric ratios following two-proton knockout from ²⁰⁸Pb

Workshop on Nuclear Isomers: Structure and Applications

Ed Simpson
University of Surrey, May 2010

www.surrey.ac.uk

Two-nucleon knockout

- •Sudden removal of well-bound nucleons from fast beams on a light nuclear target, E > 80 MeV/nucleon
- •Spectroscopic strengths and structural evolution probed via absolute cross sections and in-beam γ-ray spectroscopy
- •Residue longitudinal momentum distributions give angular momentum information, final state spins
- •First application to heavy systems and isomers in ²⁰⁶Hg; Isomer production ratios for high spin isomers; slits alter isomeric ratio?

Residue momentum distributions

Distribution sensitive to J_f

Calculation inputs

Two-nucleon overlap $(J_i=0)$

Two-nucleon amplitude (TNA)

$$\Psi_{JM} = \sum_{j_1 j_2} (-1)^{J-M} \frac{C(j_1 j_2 J)}{\sqrt{2J+1}} \underbrace{\left[\phi_{j_1} \otimes \phi_{j_2}\right]_{JM}}_{ ext{Two-nucleon}}$$
 wave function

- Oxbash TNA using *khhe* interaction in proton $[2s_{1/2}, 1d_{3/2}, 0h_{11/2}, 1d_{5/2}, 0g_{7/2}]$ model space
- Woods-Saxon radial wave functions, constrained by HF r.m.s. radii
- Glauber elastic S-matrices, density folding model, (HF calculations, reaction cross sections)

Isomer decay spec: FRS at GSI

Thick ⁹Be reaction target: many final states populated, prompt decay unobserved, momentum distribution broadened

Fragment position measured at S2 converted to momentum

S1 slits remove primary beam but cut residue momentum distribution (not at focal plane!)

Residues stopped and isomer decay observed

Thresholds and isomers

Observed states and transitions

π: 2s_{1/2}, 1d_{3/2}, 0h_{11/2}, 1d_{5/2}, 0g_{7/2} **5**- and **10**+ isomers are populated. **7**- and **8**+ states are observed in subsequent gamma

cascades

 200 Hg

 201 Hg 202 Hg

56 states are populated, only a few of which are observed following the decay of the isomeric states

[Pfützner et al., PRC <u>65</u>, 064604 (2001); Fornal et al., PRL 87, 212501 (2001)]

¹⁹⁹Au ²⁰⁰Au ²⁰¹Au ²⁰²Au ²⁰³Au ²⁰⁴Au ²⁰⁵Au

³Hg ²⁰⁴Hg

Pb 207Pb 208Pb

Isomeric Ratios

- Reasonable agreement once feeding is included
- Unobserved feeding?
- Cuts on momentum?

$$R_{I} = \frac{\sigma_{I}}{\sigma_{T}} = \frac{\int dK_{A} \, \sigma_{I}(K_{A})}{\int dK_{A} \, \sigma_{T}(K_{A})}$$
$$\sigma(K_{A}) = \frac{d\sigma}{dK_{A}}$$

Isomeric state	Isomeric ratio, R_I (%)
5 ⁻ (exp)	21.9(+1.2,-2.9)
5 ⁻ (theory)	4.8
5 ⁻ (theory: 5 ⁻ , 7 ⁻ , 8 ⁺ , 10 ⁺)	18.8 [Unobserved feeding?]
10+ (exp)	3.1(+1.0,-1.2)
10+ (theory)	4.7 [Differential cutting by slit?]

208 Pb(-2p) $[0h_{11/2}]^2$ Distribution

²⁰⁶Hg momentum distributions

²⁰⁶Hg differential isomeric ratios

$Q(\kappa_c)$: zero-thickness target

Conclusions

- ²⁰⁸Pb(-2p) calculations reproduce observed isomeric ratios and (strongly broadened) experimental momentum distributions
- Residue momentum distributions and differential isomeric ratios allow determination of final state spin; thin targets beneficial
- Cuts in the residue momentum could alter measured isomeric ratios, particular for near-beam residues
- Deformed systems: Isomers population? Momentum distributions? Isomeric beams?

Acknowledgements

Collaborators

J. A. Tostevin, Zs. Podolyak,

P. H. Regan and S. J. Steer

B. A. Brown

STFC Grants EP/D003628 and ST/F012012

208 Pb(-2p) $\longrightarrow ^{206}$ Hg(J_f =3+)

