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 K is the projection of total angular momentum of a 

nucleon state on the symmetry axis. It can be used to 

label nuclear states

 K is a conserved quantum number, if

 nucleus is axially deformed

 the system is non-rotating

 Electromagnetic transitions from 

a state K1 to a state K2 change K

by DK = K2 - K1

 Electromagnetic transitions of 

multipolarity l are forbidden 

if DK > l

K quantum number



 K-forbidden transitions violate the usual K-selection 

rules – observed in many examples

 A nucleus changes from having its angular momentum 

generated by individual nucleons rotating around the  

symmetry axis (large K) to collective rotation perpendicular 

to the symmetry axis (small K) 

 Classical explanation: shape change involving 

quantum tunneling through a potential barrier in the 

axially asymmetric g-degree of freedom

 More general microscopic explanation: K-mixing

K violation



Nuclear structure models

 Shell-model diagonalization method

 Most fundamental, quantum mechanical 

 Growing computer power helps extending applications

 A single configuration contains no physics

 Huge basis dimension required, severe limit in applications

 Mean-field approximations

 Applicable to any size of systems 

 Fruitful physics around minima of energy surfaces

 No configuration mixing, no correlations beyond mean-field

 States with broken symmetry, cannot be used to calculate 

electromagnetic transitions and decay rates



Bridge between shell-model and 

mean-field method

 Projected shell model 

 Use more physical states (e.g. solutions of a deformed mean-

field) and angular momentum projection technique to build 

shell model basis 

 Perform configuration mixing (shell-model concept)  

• K. Hara, Y. Sun, Int. J. Mod. Phys. E 4 (1995) 637 

• Y. Sun, K. Hara, Comp. Phys. Commun. 104 (1997) 245

• Y. Sun, C.-L. Wu, Phys. Rev. C 68 (2003) 024315

 The method works in between conventional shell 

model and mean field method, can take advantages of 

both



Deformed HFB solutions

 A general HFB solution gives quasiparticle vacuum     , 
with quasiparticle operators 

 can be obtained from deformed HFB or Nilsson 
(Woods-Saxon)+BCS calculations, associated with a 
deformation

 i labels a set of quantum numbers, e.g. K=7/2 of i13/2 or 
7/2+[613]

 A two-quasiparticle state                         with1 2 0K K K   
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What do we need for K-isomer 

description? 

 To describe K-mixing – It is preferable

 to construct basis states with good angular momentum I and 

parity p, classified by K

 to mix these K-states by residual interactions at given I and p

 to use resulting wavefunctions to calculate electromagnetic 

transitions in shell-model framework

 A projected intrinsic state             can be labeled by K

 defines a rotational band associated with 

the intrinsic K-state       

 Diagonalization = mixing of various K-states
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Model space constructed by 

angular-momentum projected states

 Wavefunction:

with the projector:

 Eigenvalue equation:

with matrix elements: 

 Hamiltonian is diagonalized in the projected basis 
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Building blocks: a.-m.-projected 

multi-quasi-particle states

 Even-even nuclei:

 Odd-odd nuclei:

 Odd-neutron nuclei:

 Odd-proton nuclei:
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Hamiltonian and single particle 

space

 The Hamiltonian

 Interaction strengths

 c is related to deformation e by 

 GM is determined by observed even-odd mass difference

 GQ is assumed to be proportional to GM with a ratio ~ 0.20

 Single particle space

 Three major shells for neutrons or protons (normally deformed)

four major shells for neutrons or protons (super-deformed) 

 For example, for rare-earth nuclei, N = 4, 5, 6 for neutrons

N = 3, 4, 5 for protons
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178Hf example: Theoretical bands 

of positive parity

Band diagram before K-mixing



178Hf example: Theoretical bands 

of negative parity

Band diagram before K-mixing



K-isomers:178Hf example

 PSM caclulation 

for 178Hf 

 Sun, Zhou, Long, 

Zhao, Walker, 

Phys. Lett. B 589 

(2004) 83

 Data

 S.M. Mullins et al, 

Phys. Lett.  B 393 

(1997) 279



K-isomers in transfermium nuclei

 K-isomer contains important information on single 

quasi-particles 

 e.g. for the proton 2f7/2–2f5/2 spin–orbit partners, strength of the 

spin–orbit interaction determines the size of the Z=114 gap

 Information on the position of p1/2[521] is useful

 Herzberg et al., Nature 442 (2006) 896

 Tandel et al., Phys. Rev. Lett. 97 (2006) 082502

 K-isomer in superheavy nuclei may lead to increased 

survival probabilities of these nuclei

 Xu et al., Phys. Rev. Lett. 92 (2004) 252501



Superheavy nuclei: general features

 Potential energy calculation shows deep prolate minimum

 A very good rotor, quadrupole + pairing interaction dominant 

 Low-spin rotational feature of even-even nuclei can be easily 

described (relativistic mean field, Skyrme HF, …)



Structure in 254No - Rotational 

behavior

 Current yrast state data stop 

at spin-16 – rotational 

alignment of the first 

nucleon-pair 

 Reiter et al., Phys. Rev. Lett. 

82 (1999) 509

 A up-bending in MoI 

predicted at spin-28, due to 

a simultaneous alignment of 

a neutron and a proton pair

 Al-Khudair, Long, Sun, Phys. 

Rev. C 79 (2009) 034320



K-isomers in 254No

 A high-K band with Kp = 8-

starts at ~1.3 MeV 

 A neutron 2-qp state:

(7/2+ [613] + 9/2- [734])

 A high-K band with Kp = 16+

at 2.7 MeV 

 A 4-qp state coupled by two 

neutrons and two protons:

 (7/2+ [613] + 9/2- [734]) +

p (7/2- [514] + 9/2+ [624])



K-isomers in 254No

 An experimental team in Europe found two 

isomers in 254No : T1/2 = 266 ± 2 ms and 

184 ± 3 μs

 Study of structure and decay path of the 

isomers can gain information on single-

particle states for superheavy elements

 Herzberg et al., Nature 442 (2006) 896



Shell structure changes in 

neutron-rich nuclei

 Experimental data for 

Ni (Z=28), Zn (Z=30), 

Ge (Z=32), Cr (Z=24)

 Upper: B(E2, I=20)

 Lower: first 2+ energy

 K. Kaneko, et al. 

Phys. Rev. C 78 

(2008) 064312



Neutron-rich Fe isotopes: Projected 

shell model calculations

 Sun et al., Phys. Rev. C80 (2009) 054306



Rotational properties of neutron-

rich Fe isotopes

 Comparison of calculated moments of inertia with data

 Irregularity at I ~ 8: alignment of g9/2 neutrons 

 at I ~ 16: alignment of f7/2 protons 



Transition properties of neutron-

rich Fe isotopes

 B(E2) reflects band-crossings at I = 8 and 16

 g-factor shows a sudden drop at I = 8: neutron alignment

 g-factor data: East, Stuchbery et al., PRC 79 (2009) 024304



Negative-parity states in neutron-

rich Fe isotopes

 Experimental bandheads start at I = 5 (60,62Fe) or 7 (58,64Fe)

 Predicted 2-qp states are low K-states (f5/2
- coupled to g9/2

+)



K-isomers in neutron-rich Fe 

isotopes

 K = 6 isomer states have a structure of 2-qp states of f7/2 

protons



Coulomb excitation experiment

 Hayes et al, PRC 75, 034308 (2007)



Puzzle of the 6+ state transition

 6+ K isomers in N=104 Hf, W, Os isotones showed  

direct branches to the low-K rotational bands with 

unexpectedly large transition probabilities.

 Measured hindrance factors questioned the validity of 

K quantum number.

 g-tunneling calculations can

reproduce the large E2 transition

 Narimatsu, Shimizu, Shizuma, 

Nucl. Phys. A 601 (1996) 69.

 It failed to describe the very small

E2 transition of their immediate 

neighboring isotone 174Yb



Data:  Dracoulis et al, 

PRC 71, 044326 (2005)



Triaxial projected shell model

 Break axial symmetry in single particle states – use 

triaxial Nilsson states as basis

 K is no longer a good quantum number – each Nilsson 

state is a combination of all possible K-states

 Angular-momentum-projection calculation on trlaxially 

deformed qp states – rotational bands

 K-mixing occurs at two levels:

 Within all possible K-states in each Nilsson state

 Among all qp configurations



A.-m.-projected energy surfaces

 It shows considerable g-softness in A~130 nuclei.



Triaxially deformed 0-qp state and 

g-vibration

 g-vibration states: triaxial basis with 3-dimentional angular 

momentum projection
 Sun, Hara, Sheikh, Hirsch, Velazguez, Guidry, PRC 61 (2000) 064323

 Projection onto 

triaxial 0-qp state



Triaxially deformed multi-qp 

excitations

 0-phonon (K=0), 1-phonon 

(K=2), 2-phonon (K=4) g-

vibrational bands

 Sun et al, Phys. Rev. C61 

(2000) 064323

 Each phonon g-vibrational 

mode can have qp states 

on top of them – enriched 

basis, introduce more 

mixing

 Sheikh et al., Phys. Rev. C 

77, 034313 (2008)



Triaxially deformed 

multi-qp excitations

 0-phonon (K=0), 1-phonon 

(K=2), 2-phonon (K=4) g-

vibrational bands

 Sun et al, Phys. Rev. C61 

(2000) 064323

 Each phonon g-vibrational 

mode can couple with qp 

states – generalization of 

the usual concept of g-

vibration

 Sheikh et al., Nucl. Phys. A 

824 (2009) 58 



Summary

 Angular momentum projection is an efficient way of 

truncating shell model space to perform shell model 

calculations for heavy, deformed nuclei.

 The projection technique is well developed. Projected 

shell model is a practical example.

 Using the familiar Nilsson basis to construct K-states, 

but going further by (1) projecting them onto good 

angular momentum and (2) mixing them by residual 

interactions.

 Can discuss various K-bands, inter-transitions, and 

electromagnetic properties. 


