Fast beta-gamma timing of Zr isotopes at RIKEN

Frank Browne University of Brighton

University of Brighton

Workshop on Physics Opportunities Using Arrays of Fast-Timing Gamma-ray Detectors, March 2015

Overview

- Neutron-rich Zr region
 - Sudden onset of quadrupole deformation at N≥60
 - Fast-timing of levels → insights to collectivity
- Experimental set-up
 - Isotope production and separation
 - Implantation and β-decay measurement
 - Fast-timing configuration:
 - Beta-electron detection β-electrons
 - Lanthanum bromide array γ-rays
- Data analysis
 - Position dependence of
- Selected results

N, number of neutrons

Neutron number

[d]

Ground-state transition lifetimes

Combined with transition energy, gives B(E2) values,

$$B(EL, I_i \to I_f) = \frac{e^2}{(2I_i + 1)} |\langle \psi_{I_f} || \hat{Q}_L || \psi_{I_i} \rangle|^2$$

- Direct test of ground-state shell model wavefunction
- If nucleus is axially symmetric can give g.s. deformation

$$\beta_2 = (4\pi/3ZR_0^2)[B(E2)\uparrow/e^2]^{1/2}$$
.

Accelerator system

<u>Big RI</u>KEN <u>P</u>rojectile Fragment <u>S</u>eparator

BigRIPS

From data

Fitting

Bρ-TOF: F3, F5 &F7

Delay-Line PPACs: F3-F5-F7

Dual-layers

Active area: 240x150 mm²

XY res.: < 0.5 mm

Timing plastics: F3-F7

Thickness: 0.2 mm

Distance: 47 m

Res.: ~50 ps ToF: ~245 ns $\frac{A}{Q} = \frac{B\rho}{\beta \gamma uc}$

Cathode

ZeroDegree "spectrometer"

anode

cathode

Nuclei studied

1.30x10⁵ 106Nb ions

3.77x10⁶ 104Y ions

5.0x10⁵ 102Y ions

<u>W</u>ide-range <u>A</u>ctive <u>S</u>ilicon-<u>S</u>trip <u>S</u>topper <u>A</u>rray for <u>B</u>eta and <u>i</u>on detection

WAS3ABi

Active silicon stopper array: 5 DSSSDs, 1 mm thick 60x40 strips, each 1 mm wide Spacing: 0.5 mm

Pos. res.: 1 mm Time res.: ~200 ns

Same-pixel correlation

<u>EU</u>ROBALL-<u>RI</u>KEN <u>C</u>luster <u>A</u>rray

EURICA

Co-axial HPGe array:

Total 84 crystals, 81 operational, in 12 clusters

Hexagonal tapered shape

Ave. distance from stopper centre:

~23 cm

Close-pack, enables addback

Crystal dimensions:

Length = 68 mm

 \emptyset_{front} =48.5 mm

 \emptyset_{back} =58.9 mm

Beta-gamma timing set-up

Beta-plastics:

2 mm thick, 65x45 mm² area ~1 mm up- and downstream of WAS3ABi

BC-418

Time res.: ~200 ps Efficiency: ~30%

Beta-gamma timing set-up

Beta-plastics:

2 mm thick, 65x45 mm² area ~1 mm up- and downstream of WAS3ABi

BC-418

Time res.: ~200 ps Efficiency: ~30%

Beam

LaBr₃(Ce) array:

18 cylindrical crystals \emptyset = 38.1 mm, length = 50.8 mm Lead shield: passive anti-compton Ave. distance from array centre:

~25 cm

Efficiency @ ~150 keV ~4%

Beta-gamma timing set-up

Beta-timing

Use average of left and right PMT

$$\Delta T = \frac{T_{\beta L} + T_{\beta R}}{2}$$

- Should be position independent
- Slight dependence on x-strip

Beta-timing

Before correction:

After correction:

 Does the time-of-flight to gamma-detectors have an effect?

Worst case:

Difference in implantation position across the diagonal:

$$(4^2+6^2)^{0.5} \sim 7 \text{ cm}$$

C=3·10¹⁰ cm/s, or 30 cm/ns

Across 7 cm, the time difference is: T = 7/30 approx. 0.23 ns

However, based on beam spot diameter of \sim 3 cm T = 3/30 approx. 0.1 ns

Do we observe?

Should see time resolution increase as function of area used on DSSD

Need a clean prompt transition (with good

Vary DSSD area as function of pixel

Vary DSSD area as function of pixel

Prompt transition

- Use 160 keV transition in ¹⁰²Zr
 - Gate on 152 keV 2+ → 0+ in EURICA

Results - 104Zr

Adopted: 2.9(4) ns1

50 ps added to upper uncertainty, higher lying states Predicted from others in the region

[1] J. K. Hwang, A. V. Ramayya, J. H. Hamilton, Y. X. Luo, A. V. Daniel, G. M. Ter-Akopian, J. D. Cole, and S. J. Zhu, Phys. Rev. C. 73, 044316 (2006).

Results 102Zr

Results ¹⁰⁶Mo

Adopted: 1.80(4) ns¹

[1] R.C.Jared, H.Nifenecker, S.G.Thompson, LBL-2366, p.38 (1974)

Where have we been?

- Description of fast beta-gamma timing at RIKEN
- The considerations for using a large beam spot
- Efficacy of array used confirmed with lifetimes of known states in the nanosecond regime
 - In case of 104Zr the precision has been increased
 - Long-lived components from rotational bands in ¹⁰²Zr identified

Where next?

With a full LaBr array...
Gamma-gamma from beta-decay
Or even from isomer decay?
AIDA is at RIKEN...

Thanks for collaborating...

```
F. Browne<sup>1,3</sup>, A. M. Bruce<sup>1</sup>, T. Sumikama<sup>2</sup>, S. Nishimura<sup>3</sup>, P. Doornenbal<sup>3</sup>, G. Lorusso<sup>3</sup>,
     Z. Patel<sup>3,4</sup>, S. Rice<sup>3,4</sup>, L. Sinclair<sup>3,5</sup>, P.-A. Söderström<sup>3</sup>, H. Watanabe<sup>3,6</sup>, J. Wu<sup>3,7</sup>
    Z. Y. Xu<sup>8</sup>, H. Baba<sup>3</sup>, N. Chiga<sup>2</sup>, R. Carroll<sup>4</sup>, R. Daido<sup>9</sup>, F. Didierjean<sup>13</sup>, Y. Fang<sup>9</sup>,
       G. Gev<sup>10,11,3</sup>, E. Ideguchi<sup>9</sup>, N. Inabe<sup>3</sup>, T. Isobe<sup>3</sup>, D. Kameda<sup>3</sup>, I. Kojouharov<sup>12</sup>,
    N. Kurz<sup>12</sup>, T. Kubo<sup>3</sup>, S. Lalkovski<sup>14</sup>, Z. Li<sup>7</sup>, R. Lozeva<sup>13</sup>, N. Naoki<sup>3</sup>, I. Nishizuka<sup>2</sup>,
H. Nishibata<sup>9</sup>, A. Odahara<sup>9</sup>, Zs. Podolvák<sup>4</sup>, P. H. Regan<sup>4,15</sup>, O. J. Roberts<sup>1</sup>, H. Sakurai<sup>3</sup>.
H. Schaffner<sup>12</sup>, G. S. Simpson<sup>10</sup>, H. Suzuki<sup>3</sup>, H. Takeda<sup>3</sup>, M. Tanaka<sup>9</sup>, J. Taprogge<sup>16,17,3</sup>,
                                V. Werner<sup>18,19</sup>, O. Wieland<sup>20</sup>, and A. Yagi<sup>9</sup>
    <sup>1</sup>School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4JG,
                                                     United Kingdom
            <sup>2</sup>Department of Physics, Tohoku University, Aoba, Sendai, Miyaqi 980-8578, Japan
                <sup>3</sup>RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
           <sup>4</sup> Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom
       Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
                      <sup>6</sup>Department of Physics, Beihang University, Beijing 100191, China
                      <sup>7</sup>Department of Physics, Peking University, Beijing 100871, China
         <sup>8</sup>Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
               <sup>9</sup>Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
           <sup>10</sup>LPSC, Université Grenoble-Alpes, CNRS/IN2P3, F-38026 Grenoble Cedex, France
                                        <sup>11</sup>ILL, 38042 Grenoble Cedex, France
          <sup>12</sup> GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
                   <sup>13</sup>IPHC, CNRS/IN2P3 and Université de Strasbourg, Strasbourg, France
                      <sup>14</sup>Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
           <sup>15</sup> National Physical Laboratory, Teddington, Middlesex, TW11 0LW, United Kingdom
      16 Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
                    <sup>17</sup>Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
 <sup>18</sup>A. W. Wright Nuclear Structure Laboratory, Yale University, New Haven, Connecticut 06520, USA
        <sup>19</sup>Institut f\u00fcr Kernphysik, Technische Universit\u00e4t Darmstadt, 64289 Darmstadt, Germany
                                 <sup>20</sup> INFN Sezione di Milano, I-20133 Milano, Italy
```

... and thank you for listening!

Axial symmetry?

Neutron-number

0⁺ _____

