Lifetime measurements of nuclear excited states using a mixed array of HPGe and $LaBr_3(Ce)$ detectors #### Cristina-Roxana Nita Horia Hulubei National Institute of Physics and Nuclear Engineering IFIN-HH, Romania School of Computing, Engineering and Mathematics University of Brighton. UK Workshop on Physics Opportunities Using Arrays of Fast-Timing Gamma-ray Detectors 19th-20th March 2015 ## The electronic timing technique The very basic working principle: #### Needs: - detectors with good energy resolution and timing properties (high light output, fast decay time). - appropriate electronics. M. Moszynski, H. Mach, NIM A 277 (1989) 407 N. Marginean et al., EPJ A 46 (2010) 329 ## The electronic timing technique The very basic working principle: #### Needs: - detectors with good energy resolution and timing properties (high light output, fast decay time). - appropriate electronics. M. Moszynski, H. Mach, NIM A 277 (1989) 407 N. Marginean et al., EPJ A 46 (2010) 329 ## The experimental setup #### Mixed configuration: 14 HPGe detectors with BGO shields (coaxial or planar) arranged in 3 rings: 5 @ 37°, 5 @ 143°, 4 @ 90° 11 LaBr₃(Ce) scintillation detectors in positions at : 70° , 110° , 90° . #### **Characteristics:** Absolute efficiency @ 1332 keV (⁶⁰Co): HPGe: 1.10(3)% LaBr₃(Ce): 1.75(5)% ■ Energy resolution: $\Delta R = \frac{FWHM}{E_0}$ HPGe: 0.1% @ 1332.5 keV (^{60}Co) LaBr₃(Ce): 2-3% @ 662 keV () 19-20 March 2015 # The ROSPHERE array at the Bucharest 9 MV tandem accelerator [to be submitted to NIM B] ## LaBr₃(Ce) time resolution LaBr₃(Ce) sub-array: $\Delta T = 347$ ps Time resolutions for different crystal shapes and dimensions: | Shape | Dimensions (inch) | Timing resolution (ps) | |--------------------|------------------------------|------------------------| | Cylindrical | 1.5"×1.5" | 182(2) | | Cylindrical | 2"×2" | 305(4) | | Conical | $1.5"{\times}1.5"{\times}1"$ | 158(2) | | Conical | $2"{\times}1.5"{\times}1.5"$ | 2101 | | Front Land Company | d d L a Mad D1 | | to be published in Nucl. Instr. Meth. Bj ## The lifetime of the $9/2^+$ state in 67 Cu If the lifetime is assumed to be equal to the upper limit then one obtains: B(E3;9/2⁺ $$\rightarrow$$ 3/2⁻)>11 W.u.; B(E1;9/2⁺ \rightarrow 7/2⁻)>1.1×10⁻⁶ W.u. - it was found to have a large single-particle character (from transfer reactions) #### E3 transitions in odd-mass Cu isotopes [M. Asai et al., PRC 62 (2000) 054313] E1 systematics in lighter (A=59, 61, 63) Cu isotopes: $B(E1)\approx 10^{-5}$ W.u. \rightarrow B(E3)>>11 W.u. for ⁶⁷Cu \rightarrow High collectivity! ## ⁶⁷Cu experiment with ROSPHERE 64 Ni(α ,p) 67 Cu reaction @ 18MeV production cross-section predicted with Talys: 10 mb (\approx 1% out of the total cross-section) #### Gated energy spectra: [C.R. Nita, D. Bucurescu, N. Marginean et al., PRC 89 (2014) 064314] ## The lifetime of the $9/2^+$ state in 67 Cu #### Convolution method: $$f(t) = \int_{-\infty}^{t} P(t'-t_0)e^{-\lambda(t-t')} dt'$$ The centroid shift analysis gives: $$au=$$ 229 \pm 53 ps It results that B(E3) = 16.8 ± 1.7 W.u.* *with the branching ratios adopted from C. Chiara et al., PRC 85 (2012) 024309 ## The structure of the first excited states in ²⁰⁹Bi ## The structure of $J^{\pi}=13/2^{+}$, $1/2^{+}$ states in ²⁰⁹Bi #### π (1i_{13/2} \rightarrow 1h_{9/2}) transition: | | Broglia
et al. | Hertel
el al. | Bohr, Mottelson | |--------------------------------|-------------------|------------------|-----------------| | B(E3) | 1.24(32) | 2.2(8) | 1.5(5) | | e ² fm ⁶ | $\times 10^4$ | $\times 10^4$ | $\times 10^4$ | - The E3 admixture has been determined to be 10% based on a measured mixing ratio of -0.33(10). - Breene et al., combined this measured mixing ratio with a value of B(E3;1609 \to 0)=1.5(5) \pm 10⁴ e²fm⁶, quoted by Bohr and Mottelson to derive a value of $T_{1/2}$ =270(180) ps. #### Coulomb excitation exp. [Hertel el al., PRL 23 (1969) 488] $$13/2^+$$ state, dominant $i_{13/2}$ single-particle character: $$|13/2_1^+\rangle = |0^+(^{208}Pb)\otimes \pi(i_{13/2})\rangle + |3^-\otimes \pi(h_{9/2})\rangle$$ $$1/2^+ \text{ state, 2p-1h state:}$$ $$|1/2_1^+\rangle = |0^+(^{210}Po)\otimes \pi(\mathfrak{s}_{1/2})\rangle + |3^-\otimes \pi(f_{7/2})\rangle$$ s.p. coupling to the one $\lambda=3$ phonon state in ^{208}Pb # ²⁰⁹Bi experiment with ROSPHERE $^{208} {\rm Pb} (^7 {\rm Li},~2 {\rm n}\alpha)^{209} {\rm Bi}$ reaction @ 32 MeV $\sigma_{^{209} Bi} \approx$ 3 % of the total cross-section ## Lifetime measurements in ²⁰⁹Bi ### Lifetime measurements in ²⁰⁹Bi - results | J_i^π | T _{1/2} | $L\lambda$ | Transition | $B(L\lambda)$ | $B(L\lambda)$ | |-------------------|------------------|------------|--|------------------------|---------------| | | ps | | | $e^2 fm^6$ or | W.u. | | | | | | $\mu_N^2 { m fm}^2$ | | | 13/2 ⁺ | 120(15) | E3 | $(^{208} ext{Pb }3^-\otimes\pi 1 ext{h}_{9/2}) ightarrow (^{208} ext{Pb }0^+\otimes\pi 1 ext{h}_{9/2})+$ | $1.1(4) \times 10^4$ | 4.4 | | | | | $(^{208}{ m Pb}\ 0^{+}\otimes\pi 1{ m i}_{13/2}) o (^{208}{ m Pb}\ 0^{+}\otimes\pi 1{ m h}_{9/2})$ | | | | | | M2 | $(^{208}\text{Pb }0^{+}\otimes\pi1i_{13/2}) o (^{208}\text{Pb }0^{+}\otimes\pi1h_{9/2})$ | $3.8(3) \times 10^{1}$ | 0.7 | | 1/2^+ | 8970(365) | E3 | $(^{210}\text{Po }0^{+}\otimes\pi3s_{1/2})\to (^{208}\text{Pb }0^{+}\otimes\pi2f_{7/2})$ | $6.4(2) \times 10^3$ | 2.5 | For the $13/2^+ \to 9/2^-$ (g.s.) the single-particle and the collective components cannot be disentangled from the measured B(E3) value. Particle-vibration core coupling calculations needed. ## Shell-model calculations for $J^{\pi}=13/2^{+}$ state in ²⁰⁹Bi #### KHPE - the Shell-model predicts "pure" single-particle configurations defined by $h_{9/2}$, $f_{7/2}$, $i_{13/2}$ orbitals for the g.s. $(9/2^-)$, 897 keV state $(7/2^-)$ and 1609 keV state $(13/2^+)$; - for the M2 decay, using standard gyromagnetic factors, $B(M2)_{SM}=760$ $\mu_N^2 fm^2$; - for $g_s^{eff}=0.35~g_s^{stand.}$ determined by I. Hamamoto for the ^{208}Pb region gives \to B(M2) = $125~\mu_N^2\text{fm}^2;$ ## Shell-model calculations for $J^{\pi}=1/2^{+}$ state in ²⁰⁹Bi - to gain insight into the 1/2+ state composition, proton orbitals below Z=82, i.e. $2d_{5/2},\,2d_{3/2},\,3s_{1/2},\,1h_{11/2},$ have to be considered along with orbitals above Z=82, $1h_{9/2},\,2f_{7/2},\,1i_{13/2}$ in order to account for the proton excitation on top of ^{208}Pb core. #### Shell-model wave-function: $$\mid 1/2^{+}_{1}\rangle = [\mathsf{s}_{1/2}^{-1}(\mathsf{h}_{9/2}^{2})_{0^{+}}] \ (88\%) \ + \ [\pi \ \mathsf{s}_{1/2}^{-1}(\mathsf{f}_{7/2}^{2})_{0^{+}}] \ (8\%) \ + \ [\pi \ \mathsf{s}_{1/2}^{-1}(\mathsf{i}_{13/2}^{2})_{0^{+}}]$$ - the theoretical B(E3) computed in the same valence space is equal to $0.302 \times 10^3 \ e^2 fm^6$. - it represents a pure single particle estimation which does not take into account the core polarization induced by the (h_{9/2} \otimes 3⁻(²⁰⁸Pb)) weak-coupling (4%). #### Conclusions We have successfully measured lifetimes of about 100 ps using the triple- γ coincidences with the ROSPHERE array in the mixed configuration. The triple-gamma coincidences method proved to be a powerful tool that enables the measurement of nuclear lifetimes in cases when the final decay branch is difficult to select or the statistics is poor. #### Thank you to all collaborators! Marginean N.³, Bruce A.M.¹, Roberts O.J.^{1,2}, Bucurescu D.³, Deleanu D.³, Filipescu D.³, Florea N.³, Gheorghe I.³, Ghita D.G.³, Glodariu T.³, Lica R.³, Marginean R.³, Mihai C.³, Negret A.³, Podolyak Zs.⁴, Regan P.H.⁴, Sava T.³, Stroe L.³, Suvaila R.³, Toma S.³ ¹ University of Brighton, UK ² University College Dublin, Ireland ³ Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Romania ⁴ University of Surrey, UK