Possible fast timing measurements in neutron rich Gd and Sm nuclei

Fast Timing Workshop at NPL

Matthias Rudigier University of Surrey

March 20, 2015

Kink in gsb energies at N=100

- Region of deformed nuclei
- midshell at N=104
- Dy and Gd show increase of gsb energies at N=100
- R_{4/2} stays close to 3.33
- shell effect

Calculations predict magic number N=100

2-neutron-separation energy

- Satpathy et al. (J.Phys.G 30, 771 (2004))
- Prediction of deformed shell gap at N=100
- Stronges effect in Ce (Z=58)

Rare earth abundance peak

Figure 20. r-Process yields: the distribution of r-only isotopes (full points) and the abundances obtained by subtraction of s-process abundances from solar values (open symbols).

- abundance peak at A=160
- formed by r-process
- understood as resulting from strong deformation at midshell
- different mechanism than other peaks

Formation of the rare earth peak

- calculations by Mumpower et al.
- r-process path crosses region during freeze out
- funnel-effect due to kink in neutron separation energies
- peak formation very sensitive to nulcear structure

Should measure B(E2) values (esp. of $2_1^+ \rightarrow 0_1^+$)

- No lifetimes measured in/beyond kink region for Z < 68 (Er)
- Hardly any $B(E2; 2_1^+ \rightarrow 0_1^+)$ known beyond N=96
- $\begin{array}{ll} \bullet & \tau_{2_1^+} \text{ ns region} \\ & \tau_{2_1^+} \text{ 100 ps} \\ & \rightarrow \text{ Ideal for fast timing} \end{array}$

Predictions for Sm (Z=62) isotopes

- Ghorui et al. (PRC85, 064327) predict increase of E(2₁⁺) at N=100 for Sm
- like experimentally seen in Gd
- several models predict linear increase of deformation β_2 after N=92

How to measure these nuclei?

Available data: recently 166 Gd and 164 Sm at RIKEN (Patel *et al.* PRL113,262502) 162,164 Gd at Gammasphere

obvious problems:

- statistics
- large ICC of $2_1^+ \rightarrow 0_1^+$ transition ($\alpha > 8$!)

with Gammasphere, $^{252}\mathrm{Cf}$ (62 $\mu\mathrm{Ci}$), 101 detectors, 1 month

252Cf sf source

 $\gamma-\gamma$ fast timing prob. possible for $^{160,162,164}{\rm Gd,~}^{158,160,162}{\rm Sm}$ from $^{252}{\rm Cf}$ sf

with Gammasphere, $^{252}\mathrm{Cf}$ (62 $\mu\mathrm{Ci}),$ 101 detectors, 1 month

- high efficiency at $E_{\gamma} pprox 100 \; {
 m keV}$
- good selectivity with possible gates from gsb transitions and/or fission partner
- (possibly X-rays)

Summary

- Deformed shell gap at N=100 (Ce, Nd, Sm, Gd)
- Shapes the rare earth abundance peak
- Nuclear structure info crucial for r-process calculations
- Lifetime of 2_1^+ (4_1^+) can be measured with fast timing
- Some accessible with ²⁵²Cf source
- More exotic ones need dedicated experiments
- ce-spectroscopy with good energy and timing?